Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104580
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorLiu, Men_US
dc.creatorCheung, CFen_US
dc.creatorLi, Zen_US
dc.date.accessioned2024-02-05T08:51:18Z-
dc.date.available2024-02-05T08:51:18Z-
dc.identifier.isbn978-1-5108-8135-8 (print)en_US
dc.identifier.urihttp://hdl.handle.net/10397/104580-
dc.language.isoenen_US
dc.publisherAmerican Society for Precision Engineeringen_US
dc.rightsCopyright© (2016) by American Society for Precision Engineering (ASPE)en_US
dc.rightsAll rights reserved.en_US
dc.rightsPosted with permission of the American Society for Precision Engineering .en_US
dc.rightsThis is the author manuscript of the following paper: Liu, M., Cheung, B., & Li, Z. (2016). A Gaussian process based data modelling and fusion method for multisensor coordinate measuring machines. In 31st Annual Meeting of the American Society for Precision Engineering, ASPE 2016 (pp. 179-183). American Society for Precision Engineering, ASPE.en_US
dc.titleA Gaussian process based data modelling and fusion method for multisensor coordinate measuring machinesen_US
dc.typeConference Paperen_US
dc.identifier.spage179en_US
dc.identifier.epage183en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitation31st ASPE Annual Meeting 2016, Portland, Oregon, USA, 23-28 October 2016, p. 179-183en_US
dcterms.issued2016-
dc.relation.ispartofbook31st ASPE Annual Meeting 2016en_US
dc.relation.conferenceAnnual Meeting of the American Society for Precision Engineering [ASPE]en_US
dc.description.validate202402 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumberISE-0996-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20739951-
dc.description.oaCategoryPublisher permissionen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Liu_Gaussian_Process_Data.pdf1.47 MBAdobe PDFView/Open
Open Access Information
Status open access
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

56
Citations as of Apr 14, 2025

Downloads

22
Citations as of Apr 14, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.