Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104565
PIRA download icon_1.1View/Download Full Text
Title: An in-process tool wear evaluation approach for ultra-precision fly cutting
Authors: Zhang, G 
To, S 
Issue Date: Sep-2016
Source: International journal of advanced manufacturing technology, Sept. 2016, v. 86, no. 1-4, p. 169-177
Abstract: Ultra-precision fly cutting (UPFC) is an intermittent cutting process, which is widely used in the fabrication of non-rotational symmetric micro structures with sub-micron form accuracy and nanometric surface roughness. In UPFC, the occurrence of tool wear certainly affects the accuracy of machined micro structures. Aimed at the close relations between tool wear and chip morphologies and the truth that cutting chips are fully formed in a cutting cycle, this research developed a tool wear evaluation approach based on cutting chips. Chip morphology features related to tool failure patterns were identified and then parameterized to predict the tool failure patterns, the surface topography, and surface roughness under the effects of tool failure patterns. Predictions were then verified by experimental results. Research results show that chip morphologies were successfully used to present tool failure pattern, following the well-designed identification procedures, the tool failure patterns are accurately identified. This approach is practical since it can in-process identify tool failure patterns and their effects on surface quality.
Keywords: Cutting chips
Evaluation system
Tool wear
Ultra-precision fly cutting
Publisher: Springer UK
Journal: International journal of advanced manufacturing technology 
ISSN: 0268-3768
EISSN: 1433-3015
DOI: 10.1007/s00170-015-8132-9
Rights: © Springer-Verlag London 2015
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00170-015-8132-9.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zhang_In-process_Tool_Wear.pdfPre-Published version1.83 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

75
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

42
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.