Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104532
PIRA download icon_1.1View/Download Full Text
Title: Simulated and measured surface roughness in high-speed grinding of silicon carbide wafers
Authors: Chen, S 
Cheung, C 
Zhao, C 
Zhang, F
Issue Date: Jul-2017
Source: International journal of advanced manufacturing technology, July 2017, v. 91, no. 1-4, p. 719-730
Abstract: In this paper, the primary factors affecting surface quality are studied and a theoretical model is developed for surface generation in grinding silicon carbide (SiC). The model takes into account the geometrical kinematics and tool micro-vibration in the grinding operation. The simulated roughness profiles agree reasonably well with experimental results. Spectrum analysis was used to extract three different frequencies from the machined surface topography in the frequency domain: figure error, micro-vibration of the wheel, and workpiece. The wheel synchronous micro-vibration is found to be the dominant mechanism for surface generation. The pattern of vibration marks is found to be dependent on the feed rate and the ratio of the rotational speed of the grinding wheel and the workpiece. In addition, the phase shift denoted in the fractional part of the speed ratio is inevitably induced in the evolution of surface generation in the grinding, which imposes a remarkable effect on surface quality. For a non-integral speed ratio (1500 RPM for the workpiece spindle), the arithmetical mean height of the surface (Sa) is significantly improved to about 0.108 μm. A medium phase shift (about 0.5) can suppress the scallop height so as to achieve a good surface finish (Sa = 0.091 μm). The results provide important means for improving the surface quality in ultra-precision grinding.
Keywords: Grinding
Micro-vibration
Modelling
Silicon carbide
Simulation
Surface generation
Publisher: Springer UK
Journal: International journal of advanced manufacturing technology 
ISSN: 0268-3768
EISSN: 1433-3015
DOI: 10.1007/s00170-016-9805-8
Rights: © Springer-Verlag London 2016
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00170-016-9805-8.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Cheung_Simulated_Measured_Surface.pdfPre-Published version5.58 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

80
Last Week
2
Last month
Citations as of Nov 30, 2025

Downloads

74
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

28
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

26
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.