Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104520
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorLu, YYen_US
dc.creatorWang, JBen_US
dc.creatorJi, Pen_US
dc.creatorHe, Hen_US
dc.date.accessioned2024-02-05T08:50:45Z-
dc.date.available2024-02-05T08:50:45Z-
dc.identifier.issn0305-215Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/104520-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2017 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Engineering Optimization on 04 Jan 2017 (published online), available at: http://www.tandfonline.com/10.1080/0305215X.2016.1265305.en_US
dc.subjectGroup technologyen_US
dc.subjectHeuristic algorithmen_US
dc.subjectLearning effecten_US
dc.subjectResource allocationen_US
dc.subjectSchedulingen_US
dc.titleA note on resource allocation scheduling with group technology and learning effects on a single machineen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1621en_US
dc.identifier.epage1632en_US
dc.identifier.volume49en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1080/0305215X.2016.1265305en_US
dcterms.abstractIn this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEngineering optimization, 2017, v. 49, no. 9, p. 1621-1632en_US
dcterms.isPartOfEngineering optimizationen_US
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85008419324-
dc.identifier.eissn1029-0273en_US
dc.description.validate202402 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0772-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6712444-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ji_Note_Resource_Allocation.pdfPre-Published version676.6 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

87
Last Week
8
Last month
Citations as of Dec 21, 2025

Downloads

56
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

34
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

33
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.