Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104476
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorLi, Gen_US
dc.creatorLaw, WCen_US
dc.creatorChan, KCen_US
dc.date.accessioned2024-02-05T08:50:16Z-
dc.date.available2024-02-05T08:50:16Z-
dc.identifier.issn1463-9262en_US
dc.identifier.urihttp://hdl.handle.net/10397/104476-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2018en_US
dc.rightsThe following publication Li, G., Law, W.-C., & Chan, K. C. (2018). Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chemistry, 20(16), 3689–3695 is available at https://doi.org/10.1039/c8gc01347k.en_US
dc.titleFloating, highly efficient, and scalable graphene membranes for seawater desalination using solar energyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3689en_US
dc.identifier.epage3695en_US
dc.identifier.volume20en_US
dc.identifier.issue16en_US
dc.identifier.doi10.1039/c8gc01347ken_US
dcterms.abstractSeawater dehydrates humans when it is drunk untreated, due to its high concentrations of salts. Currently, it can only be purified into large amounts of freshwater using reverse osmosis, with large electricity consumption, carbon emissions and environmental damage. Although seawater directly evaporates under natural sunlight, the efficiencies and scales are too small for practical collection. Herein, we report a floating graphene membrane for evaporating seawater into freshwater exclusively using solar energy, with high efficiency and large scalability. Polyimide films can be fully converted to graphene membranes using one-step laser scribing, without involving chemicals or generating wastes. These green desalination graphene membranes evaporate water at a rate up to 1.37 kg m−2 h−1 under one sun illumination, which possesses even higher purity than domestic water. These graphene membranes can float firmly at the air–water interface with a self-righting ability, such that the process is feasible for practical water desalination on ocean surfaces.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationGreen chemistry, 21 Aug. 2018, v. 20, no. 16, p. 3689-3695en_US
dcterms.isPartOfGreen chemistryen_US
dcterms.issued2018-08-21-
dc.identifier.scopus2-s2.0-85051489836-
dc.identifier.eissn1463-9270en_US
dc.description.validate202402 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0605-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPostdoctoral Fellowship Scheme of the Hong Kong Polytechnic University; The Hong Kong Polytechnic University; National Natural Science Foundation of China (NSFC)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS19294898-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Floating_Highly_Efficient.pdfPre-Published version1.31 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

115
Last Week
10
Last month
Citations as of Nov 30, 2025

Downloads

142
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

129
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

123
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.