Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104396
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorTseng, KKen_US
dc.creatorSun, Hen_US
dc.creatorLiu, Jen_US
dc.creatorLi, Jen_US
dc.creatorYung, KLen_US
dc.creatorIp, WHen_US
dc.date.accessioned2024-02-05T08:49:29Z-
dc.date.available2024-02-05T08:49:29Z-
dc.identifier.issn1432-7643en_US
dc.identifier.urihttp://hdl.handle.net/10397/104396-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2019en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00500-019-04537-8.en_US
dc.subjectDecoder moduleen_US
dc.subjectFully convolutional networksen_US
dc.subjectGlobal context structureen_US
dc.subjectImage semantic segmentationen_US
dc.subjectMulti-scale feature fusionen_US
dc.titleImage semantic segmentation with an improved fully convolutional networken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage8253en_US
dc.identifier.epage8273en_US
dc.identifier.volume24en_US
dc.identifier.issue11en_US
dc.identifier.doi10.1007/s00500-019-04537-8en_US
dcterms.abstractWith the development of deep learning and the emergence of unmanned driving, fully convolutional networks are a feasible and effective for image semantic segmentation. DeepLab is an algorithm based on the fully convolutional networks. However, DeepLab algorithm still has room for improvement, and we design three improved methods: (1) the global context structure module, (2) highly efficient decoder module, and (3) multi-scale feature fusion module. The experimental results show that the three improved methods that we proposed in this paper can make the model obtain more expressive features and improve the accuracy of the algorithm. At the same time, we do some experiments on the Cityscapes dataset to further verify robustness and effectiveness of the improved algorithm. Finally, the improved algorithm is applied to the actual scene and has certain practical value.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSoft computing, June 2020, v. 24, no. 11, p. 8253-8273en_US
dcterms.isPartOfSoft computingen_US
dcterms.issued2020-06-
dc.identifier.scopus2-s2.0-85075386156-
dc.identifier.eissn1433-7479en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0304-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextShenzhen Government; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS56391732-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yung_Image_Semantic_Segmentation.pdfPre-Published version1.82 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

112
Last Week
8
Last month
Citations as of Nov 30, 2025

Downloads

71
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

6
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.