Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104373
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorZhou, Ten_US
dc.creatorLaw, KMYen_US
dc.creatorYung, KLen_US
dc.date.accessioned2024-02-05T08:49:13Z-
dc.date.available2024-02-05T08:49:13Z-
dc.identifier.issn1751-7575en_US
dc.identifier.urihttp://hdl.handle.net/10397/104373-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2020 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis inEnterprise Information Systems on 12 May 2020 (published online), available at: http://www.tandfonline.com/10.1080/17517575.2020.1758796.en_US
dc.subjectBike-sharing systemen_US
dc.subjectIntention of useen_US
dc.subjectMachine learning techniquesen_US
dc.titleAn empirical analysis of intention of use for bike-sharing system in China through machine learning techniquesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage829en_US
dc.identifier.epage850en_US
dc.identifier.volume15en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1080/17517575.2020.1758796en_US
dcterms.abstractSharing bicycles, as boosted by the advanced mobile technologies, is expected to mitigate the traffic congestion and air pollution issues in China. A survey study was conducted with 335 valid samples to identify the key factors that influence the customers' intention of use for bike-sharing system and quantify the corresponding importance. Five machine learning techniques for classification are applied and results are compared. The best performed technique is selected to prioritise and quantify the importance level of the influencing factors. The results indicate that the perceived ease of use is the most significant factor for the intention to use sharing bikes.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnterprise information systems, 2021, v. 15, no. 6, p. 829-850en_US
dcterms.isPartOfEnterprise information systemsen_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85084810288-
dc.identifier.eissn1751-7583en_US
dc.description.validate202402 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0110-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS56390602-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yung_Empirical_Analysis_Intention.pdfPre-Published version1.59 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

106
Last Week
2
Last month
Citations as of Nov 30, 2025

Downloads

197
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

18
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.