Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104342
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorGuo, SFen_US
dc.creatorChan, KCen_US
dc.creatorZhu, ZQen_US
dc.creatorWu, ZRen_US
dc.creatorChen, Wen_US
dc.creatorSong, Men_US
dc.date.accessioned2024-02-05T08:48:20Z-
dc.date.available2024-02-05T08:48:20Z-
dc.identifier.issn0022-3093en_US
dc.identifier.urihttp://hdl.handle.net/10397/104342-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2016 Elsevier B.V. All rights reserveden_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Guo, S. F., Chan, K. C., Zhu, Z. Q., Wu, Z. R., Chen, W., & Song, M. (2016). Microstructure and tensile behavior of small scale resistance spot welding of sandwich bulk metallic glasses. Journal of Non-Crystalline Solids, 447, 300–306 is available at https://doi.org/10.1016/j.jnoncrysol.2016.06.026.en_US
dc.subjectLaminateen_US
dc.subjectMetallic glassesen_US
dc.subjectMicrostructureen_US
dc.subjectTensile behavioren_US
dc.titleMicrostructure and tensile behavior of small scale resistance spot welded sandwich bulk metallic glassesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage300en_US
dc.identifier.epage306en_US
dc.identifier.volume447en_US
dc.identifier.doi10.1016/j.jnoncrysol.2016.06.026en_US
dcterms.abstractIn this work, a small-scale resistance spot welding method was utilized to join two dissimilar Zr-based bulk metallic glasses and to fabricate the sandwich-laminated metallic glass plates. The laminates exhibit an almost fully amorphous structure without undesirable crystallization. Elemental line scanning across the joint interface shows a uniform distribution of the main elements, demonstrating favorable metallurgical bond in the laminate. The resultant tensile strength of the welded laminate is comparable to that of the parent metallic glasses. The fractured surface of the laminate exhibits extensive multiple failure planes, suggesting that the fracture instability was mediated by a crack branching mechanism over across the joint interface. Such a crack branching mechanism results in a stepwise fracture behavior which is contrastingly different from the conventional single primary shear band dominated catastrophic fracture in monolithic metallic glasses under tension. The unique stepwise fracture behavior endows the sandwiched metallic glass laminates with an excessive strain energy absorption through the joint interface than monolithic metallic glasses. Our results demonstrate that small-scale resistance spot welding is a promising approach to scaling up metallic glasses and to fabricating metallic glass laminates with desirable mechanical performance for structural applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of non-crystalline solids, 1 Sept 2016, v. 447, p. 300-306en_US
dcterms.isPartOfJournal of non-crystalline solidsen_US
dcterms.issued2016-09-01-
dc.identifier.scopus2-s2.0-84975744315-
dc.identifier.eissn1873-4812en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0926-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Chongqing Research Program of Basic Research and Frontier Technology; Fundamental Research Funds for the Central Universities; Open Project Program of State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6653004-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chan_Microstructure_Tensile_Behavior.pdfPre-Published version2.15 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Last Week
2
Last month
Citations as of Dec 21, 2025

Downloads

77
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

7
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.