Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104267
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.contributorDepartment of Mechanical Engineering-
dc.creatorYang, XSen_US
dc.creatorZhai, HRen_US
dc.creatorRuan, HHen_US
dc.creatorShi, SQen_US
dc.creatorZhang, TYen_US
dc.date.accessioned2024-02-05T08:47:41Z-
dc.date.available2024-02-05T08:47:41Z-
dc.identifier.issn0749-6419en_US
dc.identifier.urihttp://hdl.handle.net/10397/104267-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Yang, X.-S., Zhai, H.-R., Ruan, H.-H., Shi, S.-Q., & Zhang, T.-Y. (2018). Multi-temperature indentation creep tests on nanotwinned copper. International Journal of Plasticity, 104, 68–79 is available at https://doi.org/10.1016/j.ijplas.2018.01.016.en_US
dc.subjectCreep activation parametersen_US
dc.subjectHardnessen_US
dc.subjectIndentation creepen_US
dc.subjectNanotwinen_US
dc.subjectTwin boundary migrationen_US
dc.titleMulti-temperature indentation creep tests on nanotwinned copperen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage68en_US
dc.identifier.epage79en_US
dc.identifier.volume104en_US
dc.identifier.doi10.1016/j.ijplas.2018.01.016en_US
dcterms.abstractThe present work further develops the multi-temperature approach on load, time, and temperature-dependent deformation for indentation creep. Multi-temperature micro-indentation creep tests were carried out on nanotwinned copper (nt-Cu) at five temperatures of 22 °C (RT), 40 °C, 50 °C, 60 °C and 70 °C. In analogy with stress, hardness is used to gauge the indentation creep loading level, while the indentation depth is used to characterize the indentation creep deformation and the creep strain rate is represented by the indentation depth strain rate. The multi-temperature micro-indentation creep tests generate sufficiently large experimental data, which makes the development of a novel formula for indentation creep feasible. There are few intrinsic parameters that characterize the capability of the microstructure of a material against load, time, and temperature dependent deformation and they are the strain rate sensitivity, the athermal hardness exponent, intrinsic activation energy, and activation volume. The strain rate sensitivity is determined from isothermal creep data at one temperature, while the other parameters have to be determined from multi-temperature creep data. The novel formula is validated by the experimental data of the multi-temperature indentation creep tests on the nt-Cu. The creep mechanisms of the nt-Cu are also discussed and analyzed by using the determined values of the intrinsic parameters.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of plasticity, May 2018, v. 104, p. 68-79en_US
dcterms.isPartOfInternational journal of plasticityen_US
dcterms.issued2018-05-
dc.identifier.scopus2-s2.0-85041912164-
dc.identifier.eissn1879-2154en_US
dc.description.validate202402 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0664-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University; National Natural Science Foundation of China; Science and Technology Commission of Shanghai Municipality; 111 project from the Ministry of Education and the State Administration of Foreign Experts Affairs, PRC.en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6819044-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Multi-Temperature_Indentation_Creep.pdfPre-Published version2.04 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

113
Last Week
2
Last month
Citations as of Nov 30, 2025

Downloads

114
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

35
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

34
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.