Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104255
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorZhu, Zen_US
dc.creatorTo, Sen_US
dc.creatorLi, Yen_US
dc.creatorZhu, WLen_US
dc.creatorBian, Len_US
dc.date.accessioned2024-02-05T08:47:36Z-
dc.date.available2024-02-05T08:47:36Z-
dc.identifier.issn0888-3270en_US
dc.identifier.urihttp://hdl.handle.net/10397/104255-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhu, Z., To, S., Li, Y., Zhu, W.-L., & Bian, L. (2018). External force estimation of a piezo-actuated compliant mechanism based on a fractional order hysteresis model. Mechanical Systems and Signal Processing, 110, 296–306 is available at https://doi.org/10.1016/j.ymssp.2018.03.012.en_US
dc.subjectCompliant mechanismen_US
dc.subjectExternal force estimationen_US
dc.subjectFractional order modelen_US
dc.subjectHysteresis nonlinearityen_US
dc.subjectPiezoelectric actuatoren_US
dc.titleExternal force estimation of a piezo-actuated compliant mechanism based on a fractional order hysteresis modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage296en_US
dc.identifier.epage306en_US
dc.identifier.volume110en_US
dc.identifier.doi10.1016/j.ymssp.2018.03.012en_US
dcterms.abstractSensing of external forces applied on piezo-actuated compliant mechanisms plays a key role in state monitoring, process control and feedback strategy design in a variety of fields, including micro-/nanopositioning, micro-/nanomanipulation, and micro-/nanomanufacturing. In this paper, a force estimation strategy is proposed by comparing the practically measured displacement with the estimated free one without external forces, when subjecting to any given actuation voltages. To have an accurate prediction of the free displacement relating to the actuation voltage, an improved fractional order model is proposed. With this model, the system response is decomposed into a basic linear component and a nonlinear hysteresis component, and the extracted hysteresis is then described by an ordinary fractional order differential model using a modified voltage signal as the model input, which extracts a linear time-delay component from the original voltage. Comparative study with other two differential type hysteresis models are experimentally conducted on a piezo-actuated bridge-type compliant mechanism, demonstrating well the effectiveness and superiority of the proposed model for both system response modeling and external force estimation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMechanical systems and signal processing, 15 Sept 2018, v. 110, p. 296-306en_US
dcterms.isPartOfMechanical systems and signal processingen_US
dcterms.issued2018-09-15-
dc.identifier.scopus2-s2.0-85044170955-
dc.identifier.eissn1096-1216en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0597-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Jiangsu Province; Fundamental Research Funds for the Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6829129-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
To_External_Force_Estimation.pdfPre-Published version8.43 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

96
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

79
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

29
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

24
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.