Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104249
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorJi, Ren_US
dc.creatorLiu, Yen_US
dc.creatorTo, Sen_US
dc.creatorJin, Hen_US
dc.creatorYip, WSen_US
dc.creatorYang, Zen_US
dc.creatorZheng, Cen_US
dc.creatorCai, Ben_US
dc.date.accessioned2024-02-05T08:47:33Z-
dc.date.available2024-02-05T08:47:33Z-
dc.identifier.issn0925-8388en_US
dc.identifier.urihttp://hdl.handle.net/10397/104249-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2018 Elsevier B.V. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Ji, R., Liu, Y., To, S., Jin, H., Yip, W. S., Yang, Z., Zheng, C., & Cai, B. (2018). Efficient fabrication of gradient nanostructure layer on surface of commercial pure copper by coupling electric pulse and ultrasonics treatment. Journal of Alloys and Compounds, 764, 51–61 is available at https://doi.org/10.1016/j.jallcom.2018.06.042.en_US
dc.subjectCoupling electric pulse and ultrasonicsen_US
dc.subjectGradient nanostructure layeren_US
dc.subjectGrain boundariesen_US
dc.subjectSevere plastic deformationen_US
dc.subjectTransmission electron microscopyen_US
dc.titleEfficient fabrication of gradient nanostructure layer on surface of commercial pure copper by coupling electric pulse and ultrasonics treatmenten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage51en_US
dc.identifier.epage61en_US
dc.identifier.volume764en_US
dc.identifier.doi10.1016/j.jallcom.2018.06.042en_US
dcterms.abstractSevere plastic deformation can be easily produced on metal surfaces by coupling the micro thermal shock from high peak pulse current and the micro mechanical shock from ultrasonics. Moreover, an efficient method for preparing a gradient nanostructured metal surface by coupling electric pulse and ultrasonics treatment (CEPUT) is developed in this study. The variation in microstructure and hardness of the specimen are investigated by electron backscatter diffraction, transmission electron microscope, X-ray diffraction, and nano-indentation measurement. Results showed that on the treated copper surface with CEPUT, the original grain boundaries are no longer recognized, the average grain size decreases from 48.77 μm to 39.22 nm, and the thickness of severe plastic deformation layer reaches to approximately 500 μm. Moreover, the hardness reaches to 2.105 GPa, and CEPUT also reduces the texture in the sample surface. A computational model is developed and the grain refinement mechanism is proposed to describe the electrical-thermal-mechanical phenomena during CEPUT. The proposed simple and cost-effective method of grain refinement and to produce the graded materials is effective, especially in the materials of high thermal and electrical conductivity.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of alloys and compounds, 5 Oct. 2018, v. 764, p. 51-61en_US
dcterms.isPartOfJournal of alloys and compoundsen_US
dcterms.issued2018-10-05-
dc.identifier.scopus2-s2.0-85048214472-
dc.identifier.eissn1873-4669en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0574-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; China Postdoctoral Science Foundation; Key Pre-Research Foundation of Military Equipment of China; Fundamental Research Funds for Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS42740644-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ji_Efficient_Fabrication_Gradient.pdfPre-Published version1.34 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

111
Last Week
7
Last month
Citations as of Nov 30, 2025

Downloads

79
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

27
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

25
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.