Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104217
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorHuang, Len_US
dc.creatorWang, Den_US
dc.creatorHe, Cen_US
dc.creatorPan, Men_US
dc.creatorZhang, Ben_US
dc.creatorChen, Qen_US
dc.creatorRen, Jen_US
dc.date.accessioned2024-02-05T08:47:13Z-
dc.date.available2024-02-05T08:47:13Z-
dc.identifier.issn0921-3449en_US
dc.identifier.urihttp://hdl.handle.net/10397/104217-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2019 Elsevier B.V. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Huang, L., Wang, D., He, C., Pan, M., Zhang, B., Chen, Q., & Ren, J. (2019). Industrial wastewater desalination under uncertainty in coal-chemical eco-industrial parks. Resources, Conservation and Recycling, 145, 370–378 is available at https://doi.org/10.1016/j.resconrec.2019.02.036.en_US
dc.subjectData processing strategyen_US
dc.subjectReverse osmosisen_US
dc.subjectRobust designen_US
dc.subjectUncertaintyen_US
dc.subjectWastewater desalinationen_US
dc.titleIndustrial wastewater desalination under uncertainty in coal-chemical eco-industrial parksen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage370en_US
dc.identifier.epage378en_US
dc.identifier.volume145en_US
dc.identifier.doi10.1016/j.resconrec.2019.02.036en_US
dcterms.abstractThis work proposes a stochastic multi-scenario model for the robust design of industrial wastewater desalination under uncertainty. For fully accommodating the diverse nature of wastewater variability, multiple uncertain design parameters consisting of salt concentration, flowrate, and inlet temperature of wastewater are taken into account for the realization of uncertainty. A three-step stochastic strategy for data processing including uncertainty characterization and quantification, data sampling, and data propagation is developed to generate a proper size of feeding scenarios. The detailed process model of the dual-stage reverse osmosis is incorporated in the optimization model for minimizing the expected specific production cost. Finally, we illustrate the applicability and effectiveness of the proposed stochastic multi-scenario model with an example from a coal-chemical eco-industrial park.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationResources, conservation and recycling, June 2019, v. 145, p. 370-378en_US
dcterms.isPartOfResources, conservation and recyclingen_US
dcterms.issued2019-06-
dc.identifier.scopus2-s2.0-85063005919-
dc.identifier.eissn1879-0658en_US
dc.description.validate202402 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0469-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextthe National Natural Science Foundation of China; the Major Projects for Science and Technology of Gansu Provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS14456954-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ren_Industrial_Wastewater_Desalination.pdfPre-Published version1.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

93
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

58
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.