Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104176
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorZhou, Fen_US
dc.creatorOuyang, Len_US
dc.creatorLiu, Jen_US
dc.creatorYang, XSen_US
dc.creatorZhu, Men_US
dc.date.accessioned2024-02-05T08:46:55Z-
dc.date.available2024-02-05T08:46:55Z-
dc.identifier.issn0378-7753en_US
dc.identifier.urihttp://hdl.handle.net/10397/104176-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2019 Elsevier B.V. All rights reserveden_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhou, F., Ouyang, L., Liu, J., Yang, X.-S., & Zhu, M. (2020). Chemical bonding black phosphorus with TiO2 and carbon toward high-performance lithium storage. Journal of Power Sources, 449, 227549 is available at https://doi.org/10.1016/j.jpowsour.2019.227549.en_US
dc.subjectBlack phosphorusen_US
dc.subjectTiO2en_US
dc.subjectTi–O–P bonden_US
dc.subjectSynergistic effecten_US
dc.subjectLithium ion batteryen_US
dc.titleChemical bonding black phosphorus with TiO₂ and carbon toward high-performance lithium storageen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume449en_US
dc.identifier.doi10.1016/j.jpowsour.2019.227549en_US
dcterms.abstractPhosphorus (P)-based materials are recognized as one type of prospective candidate anodes due to its high theoretical capacities. However, it still suffers the relatively low structural stability and rate performance. In the present work, an amorphous ternary black Phosphorus (BP)- Titanium dioxide (TiO2)- Carbon (C) nanocomposite is fabricated by a facile ball milling process, which can serve as a prospective alternative for advanced anode material of Lithium-Ion Battery (LIB). We find that the introduction of TiO2 can effectively improve the conductivities of electron and lithium ion, the electrode reaction kinetics, and stabilize the structural integrity of the active material. What's more, the strong Ti–O–P bonds, forming among TiO2 and BP, can further improve the utilization of active material and the transfer of interfacial electron. As a result, the BP-TiO2-C composite exhibits outstanding electrochemical performance, involving high specific capacity, excellent rate performance (a reversible capacity of 947.4 mA h g−1 at 7.0 A g−1), and stable cycling performance (a capacity of 935.8 mA h g−1 after 300 cycles at 2 A g−1 with 85.3% retention ratio). Furthermore, when this nanocomposite is assembled with LiCoO2 cathode to build a full cell, it can also denote an excellent specific capacity, stable cycling performance and rate performance.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of power sources, 15 Feb. 2020, v. 449, 227549en_US
dcterms.isPartOfJournal of power sourcesen_US
dcterms.issued2020-02-15-
dc.identifier.scopus2-s2.0-85076569744-
dc.identifier.eissn1873-2755en_US
dc.identifier.artn227549en_US
dc.description.validate202402 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0345-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Guangdong Province of China; Guangdong Province Universities and Colleges Pearl River Scholar Funded Schemeen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20795118-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Chemical_Bonding_Black.pdfPre-Published version3.27 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

117
Last Week
5
Last month
Citations as of Nov 30, 2025

Downloads

88
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

47
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

46
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.