Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104162
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorTseng, KKen_US
dc.creatorZhang, Yen_US
dc.creatorZhu, Qen_US
dc.creatorYung, KLen_US
dc.creatorIp, WHen_US
dc.date.accessioned2024-02-05T08:46:49Z-
dc.date.available2024-02-05T08:46:49Z-
dc.identifier.issn1568-4946en_US
dc.identifier.urihttp://hdl.handle.net/10397/104162-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2020 Elsevier B.V. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Tseng, K.-K., Zhang, Y., Zhu, Q., Yung, K. L., & Ip, W. H. (2020). Semi-supervised image depth prediction with deep learning and binocular algorithms. Applied Soft Computing Journal, 92, 106272 is available at https://doi.org/10.1016/j.asoc.2020.106272.en_US
dc.subjectConvolution neural networken_US
dc.subjectDepth predictionen_US
dc.subjectSemi-supervised learningen_US
dc.titleSemi-supervised image depth prediction with deep learning and binocular algorithmsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume92en_US
dc.identifier.doi10.1016/j.asoc.2020.106272en_US
dcterms.abstractCombining the advantages and disadvantages of supervised learning and unsupervised learning strategies in convolution neural networks, this paper proposes a semi-supervised single-image depth prediction model based on binocular information and sparse laser data. The model improves the depth prediction accuracy by introducing sparse depth monitoring information, which provides a better convergence of the model with a local optimal solution. In the experiment, we validate the effectiveness of the model on the KITTI data set. Compared to the supervised algorithm, the root mean square error is reduced by 41.6% and, compared to the unsupervised algorithm, the root mean square error is reduced by 26.9%.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied soft computing, July 2020, v. 92, 106272en_US
dcterms.isPartOfApplied soft computingen_US
dcterms.issued2020-07-
dc.identifier.scopus2-s2.0-85083301256-
dc.identifier.eissn1872-9681en_US
dc.identifier.artn106272en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0299-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextShenzhen Government; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS56358419-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yung_Semi-supervised_Image_Depth.pdfPre-Published version2.42 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

110
Last Week
2
Last month
Citations as of Nov 30, 2025

Downloads

99
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

10
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.