Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104158
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorGuan, Sen_US
dc.creatorWan, Den_US
dc.creatorSolberg, Ken_US
dc.creatorBerto, Fen_US
dc.creatorWelo, Ten_US
dc.creatorYue, TMen_US
dc.creatorChan, KCen_US
dc.date.accessioned2024-02-05T08:46:46Z-
dc.date.available2024-02-05T08:46:46Z-
dc.identifier.issn1359-6462en_US
dc.identifier.urihttp://hdl.handle.net/10397/104158-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Guan, S., Wan, D., Solberg, K., Berto, F., Welo, T., Yue, T. M., & Chan, K. C. (2020). Additively manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy with enhanced strength-plasticity synergy. Scripta Materialia, 183, 133–138 is available at https://doi.org/10.1016/j.scriptamat.2020.03.032.en_US
dc.subjectAdditive manufacturingen_US
dc.subjectHeterogenous microstructureen_US
dc.subjectLaminated high-entropy alloyen_US
dc.subjectStrength-plasticity synergyen_US
dc.titleAdditively manufactured CrMnFeCoNi/AlCoCrFeNiTi₀.₅ laminated high-entropy alloy with enhanced strength-plasticity synergyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage133en_US
dc.identifier.epage138en_US
dc.identifier.volume183en_US
dc.identifier.doi10.1016/j.scriptamat.2020.03.032en_US
dcterms.abstractIn this study, we additively manufactured a CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy (HEA), with alternating layers of both constituent materials, that exhibits enhanced strength-plasticity synergy during compression (yield strength up to 990 MPa and no complete fracture until 80% strain), surpassing those of monolithic bulk HEAs. The enhanced strength-plasticity synergy originates from heterogenous microstructures of ultra-hard body-centered-cubic equiaxed grains and soft face-centered-cubic columnar grains periodically arranged in the AlCoCrFeNiTi0.5 and CrMnFeCoNi lamellae, respectively. This study demonstrates a feasible and flexible way to design HEAs with heterogenous microstructures and superior mechanical properties.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScripta materialia, 1 July 2020, v. 183, p. 133-138en_US
dcterms.isPartOfScripta materialiaen_US
dcterms.issued2020-07-01-
dc.identifier.scopus2-s2.0-85082797047-
dc.identifier.eissn1872-8456en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0291-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20602904-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Guan_Additively_Manufactured_Laminated.pdfPre-Published version1.37 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

60
Citations as of May 11, 2025

Downloads

20
Citations as of May 11, 2025

SCOPUSTM   
Citations

52
Citations as of Jun 5, 2025

WEB OF SCIENCETM
Citations

49
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.