Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104134
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorWang, Zen_US
dc.creatorShi, Xen_US
dc.creatorYang, XSen_US
dc.creatorHe, Wen_US
dc.creatorShi, SQen_US
dc.creatorMa, Xen_US
dc.date.accessioned2024-02-05T08:46:36Z-
dc.date.available2024-02-05T08:46:36Z-
dc.identifier.issn0360-3199en_US
dc.identifier.urihttp://hdl.handle.net/10397/104134-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Wang, Z., Shi, X., Yang, X. S., He, W., Shi, S. Q., & Ma, X. (2021). Atomistic simulation of the effect of the dissolution and adsorption of hydrogen atoms on the fracture of α-Fe single crystal under tensile load. International Journal of Hydrogen Energy, 46(1), 1347-1361 is available at https://doi.org/10.1016/j.ijhydene.2020.09.216.en_US
dc.subjectAtomistic simulationen_US
dc.subjectHydrogen embrittlementen_US
dc.subjectMartensitic transformationen_US
dc.subjectStatistics of hydrogen distributionen_US
dc.subjectα-Fe single Crystalen_US
dc.titleAtomistic simulation of the effect of the dissolution and adsorption of hydrogen atoms on the fracture of α-Fe single crystal under tensile loaden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1347en_US
dc.identifier.epage1361en_US
dc.identifier.volume46en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1016/j.ijhydene.2020.09.216en_US
dcterms.abstractThe local hydrogen distribution has significant influences on hydrogen embrittlement. In this work, mode-I fractures of (010)[100] pre-cracked α-Fe single crystal containing dissolved and absorbed hydrogen atoms are simulated by molecular dynamics and the time-stamped force-bias Monte Carlo methods. Statistics show that when located near the {112} plane, hydrogen atoms accelerate cleavage fracture and suppress the slip of {112}<111>; when located on the {110} plane, they promote martensite transformation and increase {110}<111> slip. Most adsorbed hydrogen atoms are concentrated near the inside of the crack surface and suppress fracture early by stress relaxation; therein concentrates stresses inside the matrix, and causes microvoid-coalescence fracture.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of hydrogen energy, 1 Jan. 2021, v. 46, no. 1, p. 1347-1361en_US
dcterms.isPartOfInternational journal of hydrogen energyen_US
dcterms.issued2021-01-01-
dc.identifier.scopus2-s2.0-85093096662-
dc.identifier.eissn1879-3487en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0182-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS31024530-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Atomistic_Simulation_Effect.pdfPre-Published version3.27 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

95
Last Week
3
Last month
Citations as of Nov 30, 2025

Downloads

88
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

15
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

15
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.