Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104128
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorZhou, Fen_US
dc.creatorYang, XSen_US
dc.creatorLiu, Jen_US
dc.creatorLiu, Jen_US
dc.creatorHu, Ren_US
dc.creatorOuyang, Len_US
dc.creatorZhu, Men_US
dc.date.accessioned2024-02-05T08:46:34Z-
dc.date.available2024-02-05T08:46:34Z-
dc.identifier.issn0378-7753en_US
dc.identifier.urihttp://hdl.handle.net/10397/104128-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhou, F., Yang, X. S., Liu, J., Liu, J., Hu, R., Ouyang, L., & Zhu, M. (2021). In-situ introducing TiP2 nanocrystals in black phosphorus anode to promote high rate-capacity synergy. Journal of Power Sources, 499, 229979 is available at https://doi.org/10.1016/j.jpowsour.2021.229979.en_US
dc.subjectTiP2 nanocrystalen_US
dc.subjectBlack phosphorusen_US
dc.subjectIn-situen_US
dc.subjectChemical bonden_US
dc.subjectLithium ion batteryen_US
dc.titleIn-situ introducing TiP₂ nanocrystals in black phosphorus anode to promote high rate-capacity synergyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume499en_US
dc.identifier.doi10.1016/j.jpowsour.2021.229979en_US
dcterms.abstractOwing to the high theoretic capacity (2596 mAh g−1) and suitable lithiation potential (~0.7 V vs. Li+/Li), Black phosphorus (BP) is considered as an ideal anode material for the fast-charging lithium-ion batteries. However, BP still faces the large volume change and low Li+ transfer during the charge/discharge. In this work, a facile two-step high-energy ball milling method is developed to synthesis the black phosphorus@TiP2–C (CBP@TiP2–C) nanocomposite for the high-rate performance anode material, in which the conductive nanocrystalline TiP2 is in-situ introduced and uniformly distributed into BP-C matrix. We reveal that the uniformly dispersed TiP2 nanocrystals can enhance the electronic and ionic conductivities of active particles and the electrode reaction kinetics. The lithiation product cubic LiyTiP4 phase is beneficial to release the stress, reduce the Li+ diffusion energy barrier and accelerate the Li+ extraction from LiP3 upon delithiation. Moreover, the contact among different components can be improved by Ti–C and P–C bonds in the CBP@TiP2–C, thus ensuring excellent electric contact within the material and enhancing the structural stability of composites. As a result, the CBP@TiP2–C anode displays a high reversible capacity of 1007.4 mAh g−1 at 10.0 A g−1 and excellent capacity retention of 925.6 mAh g−1 after 500 cycles at 2 A g−1.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of power sources, 1 July 2021, v. 499, 229979en_US
dcterms.isPartOfJournal of power sourcesen_US
dcterms.issued2021-07-01-
dc.identifier.scopus2-s2.0-85105313224-
dc.identifier.eissn1873-2755en_US
dc.identifier.artn229979en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0111-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS49975899-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_In-situ_Introducing_Nanocrystals.pdfPre-Published version3.67 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

100
Last Week
8
Last month
Citations as of Nov 30, 2025

Downloads

96
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

17
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.