Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104123
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorYuan, Sen_US
dc.creatorGan, Ben_US
dc.creatorQian, Len_US
dc.creatorWu, Ben_US
dc.creatorFu, Hen_US
dc.creatorWu, HHen_US
dc.creatorCheung, CFen_US
dc.creatorYang, XSen_US
dc.date.accessioned2024-02-05T08:46:30Z-
dc.date.available2024-02-05T08:46:30Z-
dc.identifier.issn1359-6462en_US
dc.identifier.urihttp://hdl.handle.net/10397/104123-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Yuan, S., Gan, B., Qian, L., Wu, B., Fu, H., Wu, H. H., ... & Yang, X. S. (2021). Gradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergy. Scripta Materialia, 203, 114117 is available at https://doi.org/10.1016/j.scriptamat.2021.114117.en_US
dc.subjectGradient nanotwinned structureen_US
dc.subjectHigh-resolution transmission electron microscopeen_US
dc.subjectMedium-entropy alloyen_US
dc.subjectTwin-twin intersectionen_US
dc.subjectUltra-precision machining technologyen_US
dc.titleGradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume203en_US
dc.identifier.doi10.1016/j.scriptamat.2021.114117en_US
dcterms.abstractIn this study, a high-strain rate ultra-precision machining technology named single point cubic boron nitride turning is developed to fabricate a gradient nanotwinned CrCoNi medium entropy alloy layer. The grain size of the ~ 150 µm-thick gradient layer is gradually refined from the original ~ 17 µm to ~ 25 nm in the topmost surface, exhibiting a significantly enhanced yield strength (from ~ 450 MPa to ~ 1100 MPa) and well-retained ductility of ~ 27%. High-resolution transmission electron microscope and atomistic simulations were mainly performed to unveil the size-dependent twinning mechanisms governing the gradient refinement process from the core to the topmost surface, i.e. transiting from the parallel twins segmenting ultrafine grains, twin-twin intersections refining rhombic blocks and rotating the intersected nanograins, and finally to the zero-macrostrain deformation nanotwinning in the refined nanograins. The machining process provides sufficient equivalent stress to activate the twinning partials for forming the gradient nanotwinned structure.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScripta materialia, Oct. 2021, v. 203, 114117en_US
dcterms.isPartOfScripta materialiaen_US
dcterms.issued2021-10-
dc.identifier.scopus2-s2.0-85109160858-
dc.identifier.eissn1872-8456en_US
dc.identifier.artn114117en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0080-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University; National Natural Science Foundation of China; State Key Laboratories in Hong Kong from the Innovation and Technology Commission; National Key R&D Program of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS53582245-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yuan_Gradient_Nanotwinned_Crconi.pdfPre-Published version2.28 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

114
Last Week
0
Last month
Citations as of Nov 30, 2025

Downloads

91
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

64
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

63
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.