Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103894
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.creatorZhang, Zen_US
dc.creatorZhang, Men_US
dc.creatorGong, Jen_US
dc.creatorHu, Xen_US
dc.creatorXiong, Hen_US
dc.creatorZhou, Hen_US
dc.creatorCao, Zen_US
dc.date.accessioned2024-01-10T02:41:16Z-
dc.date.available2024-01-10T02:41:16Z-
dc.identifier.issn1009-5020en_US
dc.identifier.urihttp://hdl.handle.net/10397/103894-
dc.language.isoenen_US
dc.publisherTaylor & Francis Asia Pacific (Singapore)en_US
dc.rights© 2023 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Zhan Zhang, Mi Zhang, Jianya Gong, Xiangyun Hu, Hanjiang Xiong, Huan Zhou & Zhipeng Cao (2023) LuoJiaAI: A cloud-based artificial intelligence platform for remote sensing image interpretation, Geo-spatial Information Science, 26:2, 218-241 is available at https://doi.org/10.1080/10095020.2022.2162980.en_US
dc.subjectArtificial intelligenceen_US
dc.subjectCloud computing platformen_US
dc.subjectRemote-sensing intelligent interpretationen_US
dc.subjectSample databaseen_US
dc.subjectDeep learning frameworken_US
dc.titleLuoJiaAI : a cloud-based artificial intelligence platform for remote sensing image interpretationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage218en_US
dc.identifier.epage241en_US
dc.identifier.volume26en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1080/10095020.2022.2162980en_US
dcterms.abstractThe rapid processing, analysis, and mining of remote-sensing big data based on intelligent interpretation technology using remote-sensing cloud computing platforms (RS-CCPs) have recently become a new trend. The existing RS-CCPs mainly focus on developing and optimizing high-performance data storage and intelligent computing for common visual representation, which ignores remote sensing data characteristics such as large image size, large-scale change, multiple data channels, and geographic knowledge embedding, thus impairing computational efficiency and accuracy. We construct a LuoJiaAI platform composed of a standard large-scale sample database (LuoJiaSET) and a dedicated deep learning framework (LuoJiaNET) to achieve state-of-the-art performance on five typical remote sensing interpretation tasks, including scene classification, object detection, land-use classification, change detection, and multi-view 3D reconstruction. The details of the LuoJiaAI application experiment can be found at the white paper for LuoJiaAI industrial application. In addition, LuoJiaAI is an open-source RS-CCP that supports the latest Open Geospatial Consortium (OGC) standards for better developing and sharing Earth Artificial Intelligence (AI) algorithms and products on benchmark datasets. LuoJiaAI narrows the gap between the sample database and deep learning frameworks through a user-friendly data-framework collaboration mechanism, showing great potential in high-precision remote sensing mapping applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationGeo-spatial information science (地球空间信息科学学报), 2023, v. 26, no. 2, p. 218-241en_US
dcterms.isPartOfGeo-spatial information science (地球空间信息科学学报)en_US
dcterms.issued2023-
dc.identifier.isiWOS:000937907700001-
dc.identifier.scopus2-s2.0-85148947625-
dc.identifier.eissn1993-5153en_US
dc.description.validate202401 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextChinese National Natural Science Foundation; Major Program of the National Natural Science Foundation of China; Special Fund of Hubei Luojia Laboratoryen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_LuoJiaAI_Cloud-based_Artificial.pdf33.74 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

142
Last Week
6
Last month
Citations as of Nov 9, 2025

Downloads

125
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

21
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

14
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.