Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103873
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorHu, Xen_US
dc.creatorGao, Yen_US
dc.creatorZhang, Ben_US
dc.creatorShi, Len_US
dc.creatorLi, Qen_US
dc.date.accessioned2024-01-10T02:41:07Z-
dc.date.available2024-01-10T02:41:07Z-
dc.identifier.urihttp://hdl.handle.net/10397/103873-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.rights© 2022 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Hu, X., Gao, Y., Zhang, B., Shi, L., & Li, Q. (2022). Superior cycle performance of Li metal electrode with {110} surface texturing. EcoMat, 4(6), e12264 is available at https://doi.org/10.1002/eom2.12264.en_US
dc.subjectEnergy conversion and storageen_US
dc.subjectGreen technologyen_US
dc.subjectSustainabilityen_US
dc.titleSuperior cycle performance of li metal electrode with {110} surface texturingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume4en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1002/eom2.12264en_US
dcterms.abstractLi metal foil is a most promising candidate for Li metal batteries, but its poor cycle stability remains a major obstacle limiting its development for practical applications. In the present work, we show that crystallographic orientation (surface texturing) of Li foil plays a key role in determining the cycle performance of the Li metal anode in both symmetrical cells and full cells. Li foil of {110} texturing is demonstrated to have superior cycling stability when compared to Li {100} or pristine Li foils without specific texturing. Experimental evidence and computational modeling suggest that the enhanced cycle performance of Li {110} originates from the low-surface energy/surface diffusion barrier associated with the Li {110} plane, leading to not only dense Li plating but also uniform stripping during cycling. Capacity retention of 96.1% (125.0 mAh/g) after 400 cycles is demonstrated in a full cell with Li {110} anode and LiFePO4 cathode at 1 C. This work adds to the current understanding of electrochemical plating/stripping of Li metal, and leads to new technologies that can largely extend the cycle life of Li metal electrode for the next generation of energy storage devices.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEcoMat, Nov. 2022, v. 4, no. 6, e12264en_US
dcterms.isPartOfEcoMaten_US
dcterms.issued2022-11-
dc.identifier.isiWOS:000919418200019-
dc.identifier.scopus2-s2.0-85135740720-
dc.identifier.eissn2567-3173en_US
dc.identifier.artne12264en_US
dc.description.validate202401 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextCUHKen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Superior_Cycle_Performance.pdf7.12 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

106
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

100
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

27
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

25
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.