Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103870
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorYilmaz, Gen_US
dc.creatorYang, Ten_US
dc.creatorLim, KJHen_US
dc.creatorChee, SWen_US
dc.creatorShen, Len_US
dc.creatorMirsaidov, Uen_US
dc.creatorBosman, Men_US
dc.creatorHo, GWen_US
dc.date.accessioned2024-01-10T02:41:06Z-
dc.date.available2024-01-10T02:41:06Z-
dc.identifier.urihttp://hdl.handle.net/10397/103870-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.rights© 2022 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Yilmaz, G., Yang, T., Lim, K. J. H., Chee, S. W., Shen, L., Mirsaidov, U., ... & Ho, G. W. (2023). Rational engineering of metal–organic coordination networks into facet‐controlled phosphides for overall water splitting. EcoMat, 5(3), e12312 is available at https://doi.org/10.1002/eom2.12312.en_US
dc.subjectElectrocatalysten_US
dc.subjectMetal-organic frameworken_US
dc.subjectPrussian blue analogueen_US
dc.subjectPhosphideen_US
dc.subjectWater splittingen_US
dc.titleRational engineering of metal-organic coordination networks into facet-controlled phosphides for overall water splittingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume5en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1002/eom2.12312en_US
dcterms.abstractAlthough transition metal phosphide electrocatalysts display unique electronic structure that serves as functional centers for hydrogen evolution reaction, the synthesis of this class of materials for oxygen evolution remains a challenge due to the complex multielectron transfer pathways and sluggish reaction kinetics. This study details an in-situ modification and transformation of cyanide-bridged nickel-iron (CN-NiFe) organometallic hybrid into the preferential Fe2P phase with prevailing exposed {120(sic)} faceted active centers by leveraging on the facile coordinate cleavage dynamics and compound reactivity of labile metal organic coordination frameworks. The resultant transition metal phosphide attains high electrochemical surface area, low Tafel slope, and low overpotential for the oxygen evolution reaction, while also demonstrating bifunctional electrocatalytic performance for overall water splitting. Comprehensive experimental studies and density functional theory calculations reveal that the exceptional catalytic activity originates from the transformation of framework metallic sites into preferential active sites allows an optimal adsorption of oxygen evolution reaction intermediates.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEcoMat, Mar. 2023, v. 5, no. 3, e12312en_US
dcterms.isPartOfEcoMaten_US
dcterms.issued2023-03-
dc.identifier.isiWOS:000912518600001-
dc.identifier.scopus2-s2.0-85143238901-
dc.identifier.eissn2567-3173en_US
dc.identifier.artne12312en_US
dc.description.validate202401 bcvc-
dc.description.oaVersion of Recorden_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextMinistry of Education (MOE) Singapore, under AcRF Tier 2(Ministry of Education, Singapore); NUS R&G Postdoc Fellowship Programme; A*STAR(Agency for Science Technology & Research (A*STAR))en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yilmaz_Rational_Engineering_Metal-organic.pdf5.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

111
Last Week
8
Last month
Citations as of Dec 21, 2025

Downloads

85
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

6
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

7
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.