Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103846
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorMu, Cen_US
dc.creatorTao, Wen_US
dc.date.accessioned2024-01-10T02:40:57Z-
dc.date.available2024-01-10T02:40:57Z-
dc.identifier.issn1547-1063en_US
dc.identifier.urihttp://hdl.handle.net/10397/103846-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rights©2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).en_US
dc.rightsThe following publication Mu, C., & Tao, W. (2023). Stabilization and pattern formation in chemotaxis models with acceleration and logistic source. Math. Biosci. Eng, 20, 2011-2038 is available at https://doi.org/10.3934/mbe.2023093.en_US
dc.subjectChemotaxisen_US
dc.subjectAccelerationen_US
dc.subjectStabilizationen_US
dc.subjectAmplitude equationen_US
dc.subjectPattern formationen_US
dc.titleStabilization and pattern formation in chemotaxis models with acceleration and logistic sourceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2011en_US
dc.identifier.epage2038en_US
dc.identifier.volume20en_US
dc.identifier.issue2en_US
dc.identifier.doi10.3934/mbe.2023093en_US
dcterms.abstractWe consider the following chemotaxis-growth system with an acceleration assumption, {u(t) = Delta u - del. (uw) + gamma (u - u(alpha)) , x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of Omega, t > 0, w(t) = Delta w - w + chi del v, x is an element of Omega, t > 0, under the homogeneous Neumann boundary condition for u, v and the homogeneous Dirichlet boundary condition for w in a smooth bounded domain Omega subset of R-n (n >= 1) with given parameters chi > 0, gamma >= 0 and alpha > 1. It is proved that for reasonable initial data with either n <= 3, gamma >= 0, alpha > 1 or n >= 4, gamma > 0, alpha > 1/2 + n/4, the system admits global bounded solutions, which significantly differs from the classical chemotaxis model that may have blow-up solutions in two and three dimensions. For given gamma and alpha, the obtained global bounded solutions are shown to convergence exponentially to the spatially homogeneous steady state (m, m, 0) in the large time limit for appropriately small chi, where m = 1/vertical bar Omega vertical bar integral(Omega) u(0)(x) if gamma = 0 and m = 1 if gamma > 0. Outside the stable parameter regime, we conduct linear analysis to specify possible patterning regimes. In weakly nonlinear parameter regimes, with a standard perturbation expansion approach, we show that the above asymmetric model can generate pitch-fork bifurcations which occur generically in symmetric systems. Moreover, our numerical simulations demonstrate that the model can generate rich aggregation patterns, including stationary, single merging aggregation, merging and emerging chaotic, and spatially inhomogeneous time-periodic. Some open questions for further research are discussed.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical biosciences and engineering, 2023, v. 20, no. 2, p. 2011-2038en_US
dcterms.isPartOfMathematical biosciences and engineeringen_US
dcterms.issued2023-
dc.identifier.isiWOS:000911277900007-
dc.identifier.scopus2-s2.0-85141924020-
dc.description.validate202401 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Chongqing Talent Support program; Natural Science Foundation of Chongqing; Fundamental Research Funds for the Central Universities; Chongqing Key Laboratory of Analytic Mathematics and Applications; China Postdoctoral Science Foundation; Fundamental Research Funds for the Central University; PolyU Postdoc Match-ing Fund Scheme Projecten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
mbe-20-02-093.pdf2.2 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

135
Last Week
5
Last month
Citations as of Nov 9, 2025

Downloads

139
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.