Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103720
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Nursing-
dc.creatorLiang, Sen_US
dc.creatorChoi, KSen_US
dc.creatorQin, Jen_US
dc.creatorWang, Qen_US
dc.creatorPang, WMen_US
dc.creatorHeng, PAen_US
dc.date.accessioned2024-01-02T03:10:22Z-
dc.date.available2024-01-02T03:10:22Z-
dc.identifier.issn0928-7329en_US
dc.identifier.urihttp://hdl.handle.net/10397/103720-
dc.description4th International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), 18-21 August 2015, Shanghai, Chinaen_US
dc.language.isoenen_US
dc.publisherIOS Pressen_US
dc.rights© 2016 – IOS Press and the authors. All rights reserveden_US
dc.rightsThis article is published online with Open Access and distributed under the terms of the Creative Commons Attribution NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/).en_US
dc.rightsThe following publication Liang, S., Choi, K. S., Qin, J., Wang, Q., Pang, W. M., & Heng, P. A. (2016). Discrimination of motor imagery tasks via information flow pattern of brain connectivity. Technology and Health Care, 24(s2), S795-S801 is available at https://doi.org/10.3233/THC-161212.en_US
dc.subjectEffective connectivityen_US
dc.subjectElectroencephalogram (EEG)en_US
dc.subjectInformation flow patternen_US
dc.subjectMotor imagery (MI)en_US
dc.subjectMultivariate empirical mode decomposition (MEMD)en_US
dc.titleDiscrimination of motor imagery tasks via information flow pattern of brain connectivityen_US
dc.typeConference Paperen_US
dc.identifier.spageS795en_US
dc.identifier.epageS801en_US
dc.identifier.volume24en_US
dc.identifier.issues2en_US
dc.identifier.doi10.3233/THC-161212en_US
dcterms.abstractBACKGROUND: The effective connectivity refers explicitly to the influence that one neural system exerts over another in frequency domain. To investigate the propagation of neuronal activity in certain frequency can help us reveal the mechanisms of information processing by brain.-
dcterms.abstractOBJECTIVE: This study investigates the detection of effective connectivity and analyzes the complex brain network connection mode associated with motor imagery (MI) tasks.-
dcterms.abstractMETHODS: The effective connectivity among the primary motor area is firstly explored using partial directed coherence (PDC) combined with multivariate empirical mode decomposition (MEMD) based on electroencephalography (EEG) data. Then a new approach is proposed to analyze the connection mode of the complex brain network via the information flow pattern.-
dcterms.abstractRESULTS: Our results demonstrate that significant effective connectivity exists in the bilateral hemisphere during the tasks, regardless of the left-/right-hand MI tasks. Furthermore, the out-in rate results of the information flow reveal the existence of the contralateral lateralization. The classification performance of left-/right-hand MI tasks can be improved by careful selection of intrinsic mode functions (IMFs).-
dcterms.abstractCONCLUSION: The proposed method can provide efficient features for the detection of MI tasks and has great potential to be applied in brain computer interface (BCI).-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTechnology and health care, 2016, v. 24, no. s2, p. S795-S801en_US
dcterms.isPartOfTechnology and health careen_US
dcterms.issued2016-
dc.identifier.scopus2-s2.0-84978483971-
dc.identifier.pmid27259085-
dc.relation.conferenceInternational Conference on Biomedical Engineering and Biotechnology [ICBEB]-
dc.identifier.eissn1878-7401en_US
dc.description.validate202312 bckw-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberSN-0589-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Basic Research Program of China; Hong Kong Polytechnic University; Shenzhen Basic Research Project; YC Yu Scholarship for Centre for Smart Healthen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6907096-
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Liang_Discrimination_Motor_Imagery.pdf317.19 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

107
Last Week
7
Last month
Citations as of Nov 9, 2025

Downloads

45
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

19
Citations as of Aug 22, 2025

WEB OF SCIENCETM
Citations

18
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.