Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103703
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Nursingen_US
dc.contributorDepartment of Biomedical Engineeringen_US
dc.creatorWang, Gen_US
dc.creatorDeng, Zen_US
dc.creatorChoi, KSen_US
dc.date.accessioned2024-01-02T03:10:14Z-
dc.date.available2024-01-02T03:10:14Z-
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://hdl.handle.net/10397/103703-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2016 Elsevier B.V. All rights reserved.en_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Wang, G., Deng, Z., & Choi, K. S. (2017). Detection of epilepsy with Electroencephalogram using rule-based classifiers. Neurocomputing, 228, 283-290 is available at https://doi.org/10.1016/j.neucom.2016.09.080.en_US
dc.subjectEEGen_US
dc.subjectEnsemble learning approachen_US
dc.subjectRandom foresten_US
dc.subjectSeizure detectionen_US
dc.subjectSVMen_US
dc.titleDetection of epilepsy with Electroencephalogram using rule-based classifiersen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage283en_US
dc.identifier.epage290en_US
dc.identifier.volume228en_US
dc.identifier.doi10.1016/j.neucom.2016.09.080en_US
dcterms.abstractEpilepsy is a common neurological disorder, characterized by recurrent seizures. Electroencephalogram (EEG), a useful measure for analysing the brain's electrical activity, has been widely used for the detection of epileptic seizures. Most existing classification techniques are primarily aimed at increasing detection accuracy, while the interpretability of the methods have received relatively little attention. In this work, we concentrate on the epileptic classification of EEG signals with interpretability. We propose an epilepsy detection framework, followed by a comparative study under this framework to evaluate the accuracy and interpretability of four rule-based classifiers, namely, the decision tree algorithm C4.5, the random forest algorithm (RF), the support vector machine (SVM)-based decision tree algorithm (SVM+C4.5), and the SVM-based RF algorithm (SVM+RF), in two-group, three-group, and–the most challenging of all–five-group classifications of EEG signals. The experimental results showed that RF outperformed the other three rule-based classifiers, achieving average accuracies of 0.9896, 0.9600, and 0.8260 for the two-group, three-group, and five-group seizure classifications respectively, and exhibiting higher interpretability.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNeurocomputing, 8 Mar. 2017, v. 228, p. 283-290en_US
dcterms.isPartOfNeurocomputingen_US
dcterms.issued2017-03-08-
dc.identifier.scopus2-s2.0-85009446545-
dc.identifier.eissn1872-8286en_US
dc.description.validate202311 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSN-0500-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; YC Yu Scholarship for Centre for Smart Healthen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6714824-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Detection_Epilepsy_Electroencephalogram.pdfPre-Published version990.62 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

129
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

76
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

48
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

44
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.