Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103566
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorHe, Qen_US
dc.creatorLi, Z.en_US
dc.creatorZhao, Den_US
dc.creatorYu, Jen_US
dc.creatorTan, Pen_US
dc.creatorGuo, Men_US
dc.creatorLiao, Ten_US
dc.creatorZhao, Ten_US
dc.creatorNi, Men_US
dc.date.accessioned2023-12-27T03:22:53Z-
dc.date.available2023-12-27T03:22:53Z-
dc.identifier.citationv. 282, 128934-
dc.identifier.issn0360-5442en_US
dc.identifier.otherv. 282, 128934-
dc.identifier.urihttp://hdl.handle.net/10397/103566-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2023 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication He, Q., Li, Z., Zhao, D., Yu, J., Tan, P., Guo, M., Liao, T., Zhao, T., & Ni, M. (2023). A 3D modelling study on all vanadium redox flow battery at various operating temperatures. Energy, 282, 128934 is available at https://doi.org/10.1016/j.energy.2023.128934.en_US
dc.subjectNumerical modellingen_US
dc.subjectParametric studyen_US
dc.subjectStructural optimizationen_US
dc.subjectTemperature effectsen_US
dc.subjectVanadium redox flow batteryen_US
dc.titleA 3D modelling study on all vanadium redox flow battery at various operating temperaturesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume282en_US
dc.identifier.doi10.1016/j.energy.2023.128934en_US
dcterms.abstractTo understand whether the optimization of the operating/electrode structural parameters are temperature dependent, a 3D numerical model is developed and validated to gain insight into the impact of practical operating temperature (273.15 K–323.15 K) on vanadium redox flow battery (VRFB) performance, in which the property parameters are from published experimental data. The operating temperature is found significantly influence the optimal design of VRFBs. Increasing the inlet flow rate and state of charge (SOC), decreasing the electrode porosity and fibre diameter can all improve the battery performance with interdigitated flow channels, and the improvement increases with increasing temperature. In contrast, decreasing the fibre diameter or porosity increases the flow resistance and costs higher pump consumption, which is more pronounced at a lower temperature due to higher electrolyte viscosity. The effect of electrode thickness is also different at various temperatures. The gradient porosity electrode is applied in VRFB with interdigitated flow channels. The electrochemical performance of VRFB with gradient electrode (porosity increases from 0.8 at channel side to 0.93 at membrane side) performs similarly with the VRFB with 0.8 porosity electrode, while the pressure drop is reduced by 40% at all temperature. This model provides a deep understanding of effects of a wide range of working temperature on the optimization of operating/electrode parameters and on the VRFBs’ performance.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy, 1 Nov. 2023, v. 282, 128934en_US
dcterms.isPartOfEnergyen_US
dcterms.issued2023-11-01-
dc.identifier.scopus2-s2.0-85172205291-
dc.identifier.eissn1873-6785en_US
dc.identifier.artn128934en_US
dc.description.validate202312 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2549-
dc.identifier.SubFormID47854-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
He_3D_Modelling_Study.pdfPre-Published version3.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

137
Last Week
3
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

18
Citations as of Dec 5, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Dec 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.