Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103564
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorBello, ITen_US
dc.creatorGuan, Den_US
dc.creatorYu, Nen_US
dc.creatorLi, Zen_US
dc.creatorSong, Yen_US
dc.creatorChen, Xen_US
dc.creatorZhao, Sen_US
dc.creatorHe, Qen_US
dc.creatorShao,en_US
dc.creatorNi, Men_US
dc.date.accessioned2023-12-27T02:33:15Z-
dc.date.available2023-12-27T02:33:15Z-
dc.identifier.citationv. 477, 147098-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/103564-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectCathodeen_US
dc.subjectExperimental design paradigmen_US
dc.subjectProtonic ceramic fuel cellsen_US
dc.subjectSolid oxide fuel cellsen_US
dc.titleRevolutionizing material design for protonic ceramic fuel cells : bridging the limitations of conventional experimental screening and machine learning methodsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume477en_US
dc.identifier.doi10.1016/j.cej.2023.147098en_US
dcterms.abstractThe commercial viability of protonic ceramic fuel cells (PCFCs) is contingent upon developing highly active and stable cathode materials. The conventional trial-and-error process is time-consuming and costly for cathode material development, while the availability of sufficient and reliable datasets limits the recently emerging machine learning (ML) method. Here, we propose a novel approach based on the experimental design paradigm (EDP) to efficiently facilitate PCFC cathode materials’ development with a minimal dataset. As a rigorous systematic statistical approach, we employ the EDP for strategic variation of multiple elements and measure their effect on desired performance characteristics. We generate empirical models that reveal the optimal concentrations and interactions of the elemental composition and performance characteristics. In this study, we select the BaCoαCeβFeγYζO3-δ series as a proof-of-concept, and the optimal composition, BaCo0.667Ce0.167Fe0.083Y0.083O3-δ, was promptly determined—guided by the EDP—using only 16 independent conditions and 32 randomized experimental runs. We further demonstrate the EDP’s versatility by optimizing the widely-used and high-performing Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode material for solid oxide fuel cells. Our results highlight the potential of the EDP for effectively designing superior materials for solid-state electrochemical power generation systems, offering a reliable and practical alternative to conventional trial-and-error screening and ML methods.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering journal, 1 Dec. 2023, v. 477, 147098en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2023-12-01-
dc.identifier.scopus2-s2.0-85175786360-
dc.identifier.eissn1873-3212en_US
dc.identifier.artn147098en_US
dc.description.validate202312 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2549-
dc.identifier.SubFormID47852-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-12-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-12-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

95
Last Week
0
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

22
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

55
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.