Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103561
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorChen, Xen_US
dc.creatorYu, Nen_US
dc.creatorBello, ITen_US
dc.creatorGuan, Den_US
dc.creatorLi, Zen_US
dc.creatorLiu, Ten_US
dc.creatorLiu, Ten_US
dc.creatorShao, Zen_US
dc.creatorNi, Men_US
dc.date.accessioned2023-12-27T01:54:27Z-
dc.date.available2023-12-27T01:54:27Z-
dc.identifier.citationv. 63, 103056-
dc.identifier.issn2405-8297en_US
dc.identifier.otherv. 63, 103056-
dc.identifier.urihttp://hdl.handle.net/10397/103561-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2023 Elsevier B.V. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Chen, X., Yu, N., Bello, I. T., Guan, D., Li, Z., Liu, T., Liu, T., Shao, Z., & Ni, M. (2023). Facile anion engineering: A pathway to realizing enhanced triple conductivity in oxygen electrodes for reversible protonic ceramic electrochemical cells. Energy Storage Materials, 63, 103056 is available at https://doi.org/10.1016/j.ensm.2023.103056.en_US
dc.subjectReversible protonic ceramic electrochemicalen_US
dc.subjectCells (R-PCECs)en_US
dc.subjectTriple H+/e /O2 conducting oxide (TCO)en_US
dc.subjectMetal-oxygen bonds (M-O)en_US
dc.subjectOxygen reduction reaction (ORR)en_US
dc.subjectOxygen evolution reaction (OER)en_US
dc.titleFacile anion engineering : a pathway to realizing enhanced triple conductivity in oxygen electrodes for reversible protonic ceramic electrochemical cellsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume63en_US
dc.identifier.doi10.1016/j.ensm.2023.103056en_US
dcterms.abstractReversible proton ceramic electrochemical cells (R-PCECs) have emerged as a promising solution for sustainable energy conversion and storage at intermediate temperatures. However, the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics at the air electrodes of R-PCECs limit the cell performance. To achieve improved ORR/OER catalytic performance, we propose a practical approach of strategic anion engineering on the oxygen site of air electrode materials. Specifically, the popular triple H+/e−/O2− conducting oxide (TCO) Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) is selected to enhance the limiting H+/O2− generation and migration processes as an efficient air electrode for R-PCECs. By introducing different electronegative elements (F and Cl) to weaken metal-oxygen bonds (M-O), the oxygen chemical environment of the electrode material was optimized, thereby promoting surface oxygen exchange and O2−/H+ bulk migration. The resulting Ba0.5Sr0.5Co0.8Fe0.2O2.9-σF0.1 electrode exhibits enhanced proton uptake/mobility and catalytic activity for ORR and OER, as well as improved stability. This research offers a rational design strategy for engineering high-performance R-PCEC air electrodes with enhanced operating stability for efficient and sustainable energy conversion and storage.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy storage materials, Nov. 2023, v. 63, 103056en_US
dcterms.isPartOfEnergy storage materialsen_US
dcterms.issued2023-11-
dc.identifier.scopus2-s2.0-85177048373-
dc.identifier.artn103056en_US
dc.description.validate202312 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2549-
dc.identifier.SubFormID47849-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Facile_Anion_Engineering.pdfPre-Published version3.34 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

114
Last Week
3
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

30
Citations as of Dec 5, 2025

WEB OF SCIENCETM
Citations

29
Citations as of Dec 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.