Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103526
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.creatorGu, Xen_US
dc.creatorTang, Xen_US
dc.creatorChen, Ten_US
dc.creatorLiu, Xen_US
dc.date.accessioned2023-12-13T01:54:00Z-
dc.date.available2023-12-13T01:54:00Z-
dc.identifier.issn0264-2751en_US
dc.identifier.urihttp://hdl.handle.net/10397/103526-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectUrban networken_US
dc.subjectUrban population migrationen_US
dc.subjectMobility predictionen_US
dc.subjectDeep learning modelen_US
dc.subjectUrban agglomerationsen_US
dc.titlePredicting the network shift of large urban agglomerations in China using the deep-learning gravity model : a perspective of population migrationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume145en_US
dc.identifier.doi10.1016/j.cities.2023.104680en_US
dcterms.abstractThe demands of socioeconomic development frequently lead to large-scale population migration among cities. While complex network and population migration algorithms have been employed to evaluate this phenomenon, predicting the future shift of urban networks has remained challenging. In this study, we expend the conventional two-dimensional perception of urban structure, projecting geographic information of cities into a high-dimensional future dimension to forecast changes in the network structure with deep learning algorithms. Using the population migration data from 362 Chinese cities, we employed multivariate and non-linear layers to construct a deep learning model that exhibits good geographic and temporal generalization across major metropolitan regions in China, enabling us to forecast the urban network for the year 2025. The result shows that the urban network becomes more equitable and less concentrated in a few dominant cities. This shift suggests a more balanced distribution of resources, opportunities, and development across the urban agglomerations. Understanding the urban structure from the lens of future mobile networks offers deeper insight and perception of its future dimensional nature. By embracing this paradigm shift, we can retain knowledge about urban dynamics and pave the way for more effective urban management.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCities, Feb. 2024, v. 145, 104680en_US
dcterms.isPartOfCitiesen_US
dcterms.issued2024-02-
dc.identifier.eissn1873-6084en_US
dc.identifier.artn104680en_US
dc.description.validate202312 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2536-
dc.identifier.SubFormID47831-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-02-28en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-02-28
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

174
Last Week
9
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

2
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

31
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.