Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103522
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Optometryen_US
dc.contributorResearch Centre for SHARP Visionen_US
dc.creatorShi, Den_US
dc.creatorZhou, Yen_US
dc.creatorHe, Sen_US
dc.creatorWagner, SKen_US
dc.creatorHuang, Yen_US
dc.creatorKeane, PAen_US
dc.creatorTing, DSWen_US
dc.creatorZhang, Len_US
dc.creatorZheng, Yen_US
dc.creatorHe, Men_US
dc.date.accessioned2023-12-11T09:15:48Z-
dc.date.available2023-12-11T09:15:48Z-
dc.identifier.urihttp://hdl.handle.net/10397/103522-
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.rights© 2024 Published by Elsevier Inc. on behalf of the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Shi, D., Zhou, Y., He, S., Wagner, S. K., Huang, Y., Keane, P. A., Ting, D. S. W., Zhang, L., Zheng, Y., & He, M. (2024). Cross-modality Labeling Enables Noninvasive Capillary Quantification as a Sensitive Biomarker for Assessing Cardiovascular Risk. Ophthalmology Science, 4(3), 100441 is available at https://dx.doi.org/10.1016/j.xops.2023.100441.en_US
dc.subjectCross-modality labelingen_US
dc.subjectRetinal capillary quantificationen_US
dc.subjectcardiovascular diseaseen_US
dc.subjectFundus photographyen_US
dc.subjectSensitive screeningen_US
dc.subjectRMHAS-FAen_US
dc.titleCross-modality labeling enables non-invasive capillary quantification as a sensitive biomarker for assessing cardiovascular risken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1016/j.xops.2023.100441en_US
dcterms.abstractPurpose: We aim to use Fundus fluorescein angiography (FFA) to label the capillaries on color fundus photographs (CF) and train a deep learning model to quantify retinal capillaries non-invasively from CF and apply it to cardiovascular disease (CVD) risk assessment.en_US
dcterms.abstractDesign: cross-sectional studyen_US
dcterms.abstractSubjects: 90,732 pairs of CF-FFA images from 3893 participants.en_US
dcterms.abstractMain Outcome Measures: Area under the ROC curve (AUC), accuracy, sensitivity, and specificity for segmentation. Hazard ratio [95% confidence interval (CI)] for Cox regression analysis.en_US
dcterms.abstractMethod: We matched the vessels extracted from FFA and CF, and used vessels from FFA as labels to train a deep learning model (RMHAS-FA) to segment retinal capillaries using CF. We tested the model's accuracy on a manually labeled internal test set (FundusCapi). For external validation, we tested the segmentation model on seven vessel segmentation datasets, and investigated the clinical value of the segmented vessels in predicting CVD events using data from 49,229 participants in the UK Biobank.en_US
dcterms.abstractResults: On the FundusCapi dataset, the segmentation performance was AUC = 0.94, accuracy = 0.93, sensitivity = 0.89, and specificity = 0.93. Smaller vessel skeleton density had a stronger correlation with CVD risk factors and incidence (p < 0.01). Reduced density of small vessel skeletons was strongly associated with an increased risk of CVD incidence and mortality for women (HR [95% CI] = 0.91[0.84-0.98] and 0.68[0.54-0.86], respectively).en_US
dcterms.abstractConclusions: Using paired CF-FFA images, we automated the laborious manual labeling process and enabled non-invasive capillary quantification from CF, supporting its potential as a sensitive screening method for identifying individuals at high risk of future CVD events.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOphthalmology science, May-June 2024, v. 4, no. 3, 100441en_US
dcterms.isPartOfOphthalmology scienceen_US
dcterms.issued2024-05-
dc.identifier.eissn2666-9145en_US
dc.identifier.artn100441en_US
dc.description.validate202312 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2531-n01, a2659-
dc.identifier.SubFormID48028-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextGlobal STEM Professorship Schemeen_US
dc.description.fundingTextFundamental Research Funds of the State Key Laboratory of Ophthalmologyen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2666914523001732-main.pdf3.84 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

167
Last Week
5
Last month
Citations as of Nov 30, 2025

Downloads

59
Citations as of Nov 30, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.