Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103485
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorZhang, Hen_US
dc.creatorChen, Ben_US
dc.creatorXu, Hen_US
dc.creatorNi, Men_US
dc.date.accessioned2023-12-11T00:34:17Z-
dc.date.available2023-12-11T00:34:17Z-
dc.identifier.issn0140-7007en_US
dc.identifier.urihttp://hdl.handle.net/10397/103485-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2016 Elsevier Ltd and IIR. All rights reserved.en_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhang, H., Chen, B., Xu, H., & Ni, M. (2016). Thermodynamic assessment of an integrated molten carbonate fuel cell and absorption refrigerator hybrid system for combined power and cooling applications. International Journal of Refrigeration, 70, 1-12 is available at https://doi.org/10.1016/j.ijrefrig.2016.07.011.en_US
dc.subjectAbsorption refrigeratoren_US
dc.subjectHybrid systemen_US
dc.subjectIrreversible lossen_US
dc.subjectMolten carbonate fuel cellen_US
dc.subjectThermodynamic assessmenten_US
dc.titleThermodynamic assessment of an integrated molten carbonate fuel cell and absorption refrigerator hybrid system for combined power and cooling applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1en_US
dc.identifier.epage12en_US
dc.identifier.volume70en_US
dc.identifier.doi10.1016/j.ijrefrig.2016.07.011en_US
dcterms.abstractA hybrid system is proposed to harvest the waste heat released in MCFC through integrating an absorption refrigerator as a bottoming cycle. A thermo-electrochemical model is used to describe the main irreversible losses in the system. The operating current density interval of the MCFC that enables the bottoming absorption refrigerator to effectively cool is determined. Numerical expressions for the equivalent power output and efficiency are derived to evaluate the performance of the hybrid system under different operating conditions. Compared to the stand-alone MCFC, the maximum power density and the corresponding efficiency of the hybrid system are found to have increased by 3.2% and 3.8%, respectively. The general performance characteristics and optimum operating regions for the hybrid system are revealed. Comprehensive parametric analyses are conducted to investigate how the hybrid system performance depends on various physical properties and working conditions such as working fluid internal irreversibility inside the absorption refrigerator, heat transfer coefficients, some thermodynamic losses related parameters, and the operating current density, temperature and pressure of the MCFC.-
dcterms.accessRightsopen accessen_US
dcterms.alternativeÉvaluation thermodynamique d’une pile à combustible intégrée au carbonate fondu et d’un système hybride de réfrigérateur à absorption pour les applications de cogénération d’électricité et de froiden_US
dcterms.bibliographicCitationInternational journal of refrigeration, Oct. 2016, v. 70, p. 1-12en_US
dcterms.isPartOfInternational journal of refrigerationen_US
dcterms.issued2016-10-
dc.identifier.scopus2-s2.0-84979524802-
dc.identifier.eissn1879-2081en_US
dc.description.validate202312 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-1065-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6662978-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Thermodynamic_Assessment_Integrated.pdfPre-Published version1.65 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

106
Last Week
3
Last month
Citations as of Dec 21, 2025

Downloads

91
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

30
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

28
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.