Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103432
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorVijay, Pen_US
dc.creatorTadé, MOen_US
dc.creatorShao, Zen_US
dc.creatorNi, Men_US
dc.date.accessioned2023-12-11T00:33:52Z-
dc.date.available2023-12-11T00:33:52Z-
dc.identifier.issn0360-3199en_US
dc.identifier.urihttp://hdl.handle.net/10397/103432-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Vijay, P., Tadé, M. O., Shao, Z., & Ni, M. (2017). Modelling the triple phase boundary length in infiltrated SOFC electrodes. International Journal of Hydrogen Energy, 42(48), 28836-28851 is available at https://doi.org/10.1016/j.ijhydene.2017.10.004.en_US
dc.subjectInfiltrated electrodesen_US
dc.subjectModellingen_US
dc.subjectSOFCen_US
dc.subjectTriple phase boundaryen_US
dc.titleModelling the triple phase boundary length in infiltrated SOFC electrodesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage28836en_US
dc.identifier.epage28851en_US
dc.identifier.volume42en_US
dc.identifier.issue48en_US
dc.identifier.doi10.1016/j.ijhydene.2017.10.004en_US
dcterms.abstractA model based on the principles of coordination number and percolation theory is proposed for calculating the triple phase boundary (TPB) lengths in the Solid Oxide Fuel Cell (SOFC) electrodes infiltrated with nano particles. The TPB length is a critical microstructural property that influences the cell performance. Empirical expressions for the overall average coordination number and percolation probabilities are proposed to compliment the basic model framework provided by the coordination number principles. The comparison with the numerical and analytical model results from literature is used to both evaluate and interpret the proposed model. The model demonstrates reasonable agreement with literature model and experimental results and provides insights into the coordination number behaviour. This model is a potential alternative to the expensive numerical simulations for the microstructural optimisation of the infiltrated electrodes.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of hydrogen energy, 30 Nov. 2017, v. 42, no. 48, p. 28836-28851en_US
dcterms.isPartOfInternational journal of hydrogen energyen_US
dcterms.issued2017-11-30-
dc.identifier.scopus2-s2.0-85032258496-
dc.identifier.eissn1879-3487en_US
dc.description.validate202312 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0875-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextAustralian Research Council (ARC)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6792033-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ni_Modelling_Triple_Phase.pdfPre-Published version2.53 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

74
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

74
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

21
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

21
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.