Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103389
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorZhang, JHen_US
dc.creatorLei, LBen_US
dc.creatorLiu, Den_US
dc.creatorZhao, FYen_US
dc.creatorNi, Men_US
dc.creatorChen, Fen_US
dc.date.accessioned2023-12-11T00:33:35Z-
dc.date.available2023-12-11T00:33:35Z-
dc.identifier.issn0378-7753en_US
dc.identifier.urihttp://hdl.handle.net/10397/103389-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2018 Elsevier B.V. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhang, J. H., Lei, L. B., Liu, D., Zhao, F. Y., Ni, M., & Chen, F. (2018). Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage. Journal of Power Sources, 400, 333-340 is available at https://doi.org/10.1016/j.jpowsour.2018.08.038.en_US
dc.subjectCurrent leakageen_US
dc.subjectFaraday and energy efficienciesen_US
dc.subjectModelingen_US
dc.subjectNernst-planck equationen_US
dc.subjectProton-conductingen_US
dc.subjectSOFCen_US
dc.titleMathematical modeling of a proton-conducting solid oxide fuel cell with current leakageen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage333en_US
dc.identifier.epage340en_US
dc.identifier.volume400en_US
dc.identifier.doi10.1016/j.jpowsour.2018.08.038en_US
dcterms.abstractIn this work, a framework of charge transports in proton-conducting solid oxide fuel cells (H-SOFCs) with considering current leakage is developed by assuming four electrode reactions. Current leakage occurs when electron holes pass through the electrolyte and combine with electrons at the anode side. An analytical solution of leakage currents is proposed depending on the Nernst-Planck equation. On the basis of the analysis expression, a mathematical model of H-SOFCs is proposed, which can provide the information about current-voltage characteristics, leakage current density, Faraday and energy efficiencies. Furthermore, H-SOFCs with the BaZr0.8Y0.2O3 electrolyte are fabricated and tested, and the proposed model well reproduces the experimental data. The simulation results indicate that current leakage primarily affects the H-SOFC performance when the output voltage is close to the OCV. Both Faraday efficiencies and energy efficiencies decrease with increasing operating temperatures due to the existence of current leakage.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of power sources, 1 Oct. 2018, v. 400, p. 333-340en_US
dcterms.isPartOfJournal of power sourcesen_US
dcterms.issued2018-10-01-
dc.identifier.scopus2-s2.0-85051663454-
dc.identifier.eissn1873-2755en_US
dc.description.validate202312 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0724-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNatural Science Foundation of China; Shenzhen Basic Research Project; Joint Zhuzhou - Hunan Provincial Natural Science Foundation; National Defenses Research Funds for the Central Universities; National Key Basic Research Program of China; DongGuan Innovative Research Team Program; US Department of Energy SECA Core Technology Program; China Scholarship Councilen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS15536506-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ni_Mathematical_Modeling_Proton-Conducting.pdfPre-Published version1.57 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

99
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

56
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

69
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

66
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.