Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103360
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.creatorXu, Hen_US
dc.creatorChen, Ben_US
dc.creatorTan, Pen_US
dc.creatorXuan, Jen_US
dc.creatorMaroto-Valer, MMen_US
dc.creatorFarrusseng, Den_US
dc.creatorSun, Qen_US
dc.creatorNi, Men_US
dc.date.accessioned2023-12-11T00:33:24Z-
dc.date.available2023-12-11T00:33:24Z-
dc.identifier.issn0306-2619en_US
dc.identifier.urihttp://hdl.handle.net/10397/103360-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2018 Published by Elsevier Ltd.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Xu, H., Chen, B., Tan, P., Xuan, J., Maroto-Valer, M. M., Farrusseng, D., .. & Ni, M. (2019). Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design. Applied Energy, 235, 602-611 is available at https://doi.org/10.1016/j.apenergy.2018.10.069.en_US
dc.subjectAll porous solid oxide fuel cellen_US
dc.subjectCarbon depositionen_US
dc.subjectMathematical modelingen_US
dc.subjectMethane cokingen_US
dc.subjectNovel designen_US
dc.titleModeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity designen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Modeling of all-porous solid oxide fuel cells with a focus on the optimization of electrolyte porosityen_US
dc.identifier.spage602en_US
dc.identifier.epage611en_US
dc.identifier.volume235en_US
dc.identifier.doi10.1016/j.apenergy.2018.10.069en_US
dcterms.abstractConventional solid oxide fuel cells (SOFCs) could suffer from carbon deposition when fueled with hydrocarbons. For comparison, a new type of SOFC with porous electrolyte can resist carbon deposition because it allows oxygen molecules to transport from the cathode to the anode. As the transport of O2 to the anode lowers the fuel cell performance and causes the risk of explosion, the rate of O2 transport must be well controlled to ensure efficient and safe operation. Following our previous model, this paper focuses on electrolyte porosity optimization under various inlet methane mole fractions, inlet oxygen mole fractions and inlet gas flow rates. Furthermore, a new design with a partial porous electrolyte is proposed and numerically evaluated. The new design significantly improves the electrochemical performance compared with all-porous one. A conversion rate >90% from methane to syngas is achieved at the 0.33 inlet CH4 mole fraction with the new design. The results enhance the understanding of all porous solid oxide fuel cells and the mechanism underlying, inspiring novel designs of solid oxide fuel cells.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied energy, 1 Feb. 2019, v. 235, p. 602-611en_US
dcterms.isPartOfApplied energyen_US
dcterms.issued2019-02-01-
dc.identifier.scopus2-s2.0-85056243420-
dc.identifier.eissn1872-9118en_US
dc.description.validate202312 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0644-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextFrance/HK Joint Research Scheme; UK Engineering and Physical Sciences Research Council; Research Centre for Carbon Solutions (RCCS), Heriot–Watt Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS15537839-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xu_Modeling_All-Porous_Solid.pdfPre-Published version1.14 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

96
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

70
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

38
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

27
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.