Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103299
PIRA download icon_1.1View/Download Full Text
Title: Cation-substitution-tuned oxygen electrocatalyst of spinel cobaltite MCo₂O₄ (M = Fe, Co, and Ni) hexagonal nanoplates for rechargeable Zn-air batteries
Authors: Tan, P 
Wu, Z 
Chen, B 
Xu, H 
Cai, W 
Jin, S
Shao, Z
Ni, M 
Issue Date: Jan-2019
Source: Journal of the Electrochemical Society, Jan. 2019, v. 166, no. 14, p. A3448-A3455
Abstract: The spinel cobalt oxide (Co3O4) nanoplate exposed with hexagonal {111} facets is demonstrated to be a highly active catalyst, while the effect of cation substitution on the oxygen electrocatalysis is still unclear. Herein, the electrocatalytic activity of cation-substituted spinel cobaltite MCo2O4 (M = Fe, Co, and Ni) nanoplates with the {111} facets is investigated systematically by experiments and theoretical calculations. For both oxygen reduction and evolution reactions, Ni-substituted Co3O4 hexagonal nanoplates show the best activity. It is mainly attributed to the increased surface energy per unit area and the enhanced oxygen species absorption ability, which are also evidenced by density functional theory calculations. Moreover, the three kinds of MCo2O4 nanoplates are applied in Zn-air batteries and the corresponding electrochemical performance is tested. Among the three batteries, NiCo2O4 hexagonal nanoplates also enable the highest peak power density of 110.3 mW cm−2 and the most stable discharge-charge voltage profiles for 50 cycles, indicating that NiCo2O4 nanoplates are the promising catalyst for further Zn-air battery applications. Besides, this work illustrates that the substitution of Co by Ni or Fe can remarkably change the electronic structural states, thus tuning the electrochemical properties of the hexagonal Co3O4 nanoplates.
Publisher: Electrochemical Society
Journal: Journal of the Electrochemical Society 
ISSN: 0013-4651
EISSN: 1945-7111
DOI: 10.1149/2.1311914jes
Rights: © 2019 The Electrochemical Society.
This is the Accepted Manuscript version of an article accepted for publication in Journal of The Electrochemical Society. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1149/2.1311914jes.
This manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Tan_Cation-substitution-tuned_Oxygen_Spinel.pdfPre-Published version2.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

107
Last Week
2
Last month
Citations as of Nov 30, 2025

Downloads

70
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

13
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.