Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103298
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorWang, Fen_US
dc.creatorLi, Hen_US
dc.date.accessioned2023-12-11T00:32:59Z-
dc.date.available2023-12-11T00:32:59Z-
dc.identifier.issn0307-904Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/103298-
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.rights© 2019 Elsevier Inc. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Wang, F., & Li, H. (2019). A practical non-parametric copula algorithm for system reliability with correlations. Applied Mathematical Modelling, 74, 641-657 is available at https://doi.org/10.1016/j.apm.2019.05.011.en_US
dc.subjectKendall rank correlationen_US
dc.subjectMinimum information copulaen_US
dc.subjectPearson linear correlationen_US
dc.subjectSpearman rank correlationen_US
dc.subjectSystem reliabilityen_US
dc.titleA practical non-parametric copula algorithm for system reliability with correlationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage641en_US
dc.identifier.epage657en_US
dc.identifier.volume74en_US
dc.identifier.doi10.1016/j.apm.2019.05.011en_US
dcterms.abstractSystem reliability analysis involving correlated random variables is challenging because the failure probability cannot be uniquely determined under the given probability information. This paper proposes a system reliability evaluation method based on non-parametric copulas. The approximated joint probability distribution satisfying the constraints specified by correlations has the maximal relative entropy with respect to the joint probability distribution of independent random variables. Thus the reliability evaluation is unbiased from the perspective of information theory. The estimation of the non-parametric copula parameters from Pearson linear correlation, Spearman rank correlation, and Kendall rank correlation are provided, respectively. The approximated maximum entropy distribution is then integrated with the first and second order system reliability method. Four examples are adopted to illustrate the accuracy and efficiency of the proposed method. It is found that traditional system reliability method encodes excessive dependence information for correlated random variables and the estimated failure probability can be significantly biased.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied mathematical modelling, Oct. 2019, v. 74, p. 641-657en_US
dcterms.isPartOfApplied mathematical modellingen_US
dcterms.issued2019-10-
dc.identifier.scopus2-s2.0-85066270715-
dc.identifier.eissn1872-8480en_US
dc.description.validate202312 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0499-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS15443197-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Practical_Non-parametric_Copula.pdfPre-Published version9.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

119
Last Week
3
Last month
Citations as of Nov 30, 2025

Downloads

64
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

10
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.