Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103262
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorZhao, Den_US
dc.creatorHe, Qen_US
dc.creatorYu, Jen_US
dc.creatorJiang, Jen_US
dc.creatorLi, Xen_US
dc.creatorNi, Men_US
dc.date.accessioned2023-12-11T00:32:45Z-
dc.date.available2023-12-11T00:32:45Z-
dc.identifier.issn0360-3199en_US
dc.identifier.urihttp://hdl.handle.net/10397/103262-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhao, D., He, Q., Yu, J., Jiang, J., Li, X., & Ni, M. (2020). Dynamic behaviour and control strategy of high temperature proton exchange membrane electrolyzer cells (HT-PEMECs) for hydrogen production. International Journal of Hydrogen Energy, 45(51), 26613-26622 is available at https://doi.org/10.1016/j.ijhydene.2020.07.155.en_US
dc.subjectDynamic responseen_US
dc.subjectElectrolysisen_US
dc.subjectHydrogen productionen_US
dc.subjectNumerical modellingen_US
dc.subjectOptimization problemen_US
dc.subjectProton exchange membrane electrolyzer cellen_US
dc.titleDynamic behaviour and control strategy of High Temperature Proton Exchange Membrane Electrolyzer Cells (HT-PEMECs) for hydrogen productionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage26613en_US
dc.identifier.epage26622en_US
dc.identifier.volume45en_US
dc.identifier.issue51en_US
dc.identifier.doi10.1016/j.ijhydene.2020.07.155en_US
dcterms.abstractA fast and safe dynamic process is a key issue during the start-stop and adjustment of high temperature proton exchange membrane electrolyzer cells (HT-PEMECs). In the paper, a 2D multi-physics model is developed to investigate the dynamic process in an HT-PEMEC. First, the dynamic responses of step scheme, multistep scheme and diagonal scheme are compared. It is found that the step scheme has the fastest dynamic response, but it may cause the problem of reactant starvation. The dynamic response speed of diagonal scheme is slower than the step scheme, but it can prevent the problem of reactant starvation. Subsequently, the dynamic process is optimized with a fast dynamic response without reactant starvation. This paper proposes a fast and safe dynamic process adjustment scheme and forms a basis for subsequent control of the HT-PEMEC stack and system.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of hydrogen energy, 16 Oct. 2020, v. 45, no. 51, p. 26613-26622en_US
dcterms.isPartOfInternational journal of hydrogen energyen_US
dcterms.issued2020-10-16-
dc.identifier.scopus2-s2.0-85089141759-
dc.identifier.eissn1879-3487en_US
dc.description.validate202312 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0426-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS28144472-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhao_Dynamic_Behaviour_Control.pdfPre-Published version1.12 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

84
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

45
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

39
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.