Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103199
PIRA download icon_1.1View/Download Full Text
Title: Shape Memory Alloy (SMA)-cable-controlled sliding bearings : development, testing, and system behavior
Authors: Liang, D
Zheng, Y
Fang, C 
Yam, MCH 
Zhang, C
Issue Date: Aug-2020
Source: Smart materials and structures, Aug. 2020, v. 29, no. 8, 085006
Abstract: This paper presents an innovative type of friction sliding bearing system incorporating shape memory alloy (SMA) cables. The study commences with cyclic tests on individual SMA cables to understand their fundamental mechanical properties. The working principle of the proposed SMA-cable-controlled friction sliding bearing (SMA-sliding bearing) is subsequently described, followed by physical tests on two SMA-sliding bearing specimens. The bearing specimens show rectangular hysteresis loops induced by Coulomb friction before the SMA cables are stretched, and afterward the load resistance and energy dissipation capacity of the bearings are increased accompanied by certain self-centering capability due to the engagement of the SMA cables. Such action is expected to effectively restrict excessive displacements of the bearings and to help reduce the residual displacement. Following the experimental study, a theoretical model of the new bearing is developed and numerical simulation is carried out. The theoretical and numerical results agree very well with the experimental results. A case study focusing on a three-span continuous bridge subjected to pulse-like near-fault (NF) ground motions is subsequently conducted, where three types of bearing system, namely, conventional sliding bearing system, SMA-sliding bearing system, and steel-cable-controlled (steel-sliding) bearing system are compared. The system-level analysis results show that the proposed SMA-sliding bearing has its superiority in superstructure displacement control, with a limited increase in the curvature ductility of the pier.
Keywords: Bridge
Experimental study
Friction sliding bearing
Seismic resilience
Shape memory alloy (SMA) cable
System-level analysis
Publisher: Institute of Physics Publishing
Journal: Smart materials and structures 
ISSN: 0964-1726
EISSN: 1361-665X
DOI: 10.1088/1361-665X/ab8f68
Rights: © 2020 IOP Publishing Ltd
This is the Accepted Manuscript version of an article accepted for publication in Smart Materials and Structures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-665X/ab8f68.
This manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yam_Shape_Memory_Alloy.pdfPre-Published version3.36 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

124
Last Week
5
Last month
Citations as of Nov 30, 2025

Downloads

160
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

99
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

83
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.