Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103159
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorZhang, Xen_US
dc.creatorNi, Men_US
dc.creatorWang, Jen_US
dc.creatorYang, Len_US
dc.creatorMao, Xen_US
dc.creatorSu, Sen_US
dc.creatorYang, Zen_US
dc.creatorChen, Jen_US
dc.date.accessioned2023-12-11T00:32:00Z-
dc.date.available2023-12-11T00:32:00Z-
dc.identifier.issn0196-8904en_US
dc.identifier.urihttp://hdl.handle.net/10397/103159-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2020 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhang, X., Ni, M., Wang, J., Yang, L., Mao, X., Su, S., ... & Chen, J. (2020). Configuration design and parametric optimum selection of a self-supporting PEMFC. Energy Conversion and Management, 225, 113391 is available at https://doi.org/10.1016/j.enconman.2020.113391.en_US
dc.subjectMaximum power densityen_US
dc.subjectParametric optimum selectionen_US
dc.subjectProton exchange membrane fuel cellen_US
dc.subjectSelf-supporting operationen_US
dc.subjectSteam reformingen_US
dc.titleConfiguration design and parametric optimum selection of a self-supporting PEMFCen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume225en_US
dc.identifier.doi10.1016/j.enconman.2020.113391en_US
dcterms.abstractA new theoretical model of the thermally self-sustained proton exchange membrane fuel cell (PEMFC) is proposed, where syngas is preheated by the heat from the reaction in the fuel cell and water gas shift reactions, and the endothermic steam reforming process of methane is maintained by absorbing a part of the combustion heat of residuary hydrogen from the fuel cell. Based on some thermal equilibrium equations, the temperatures of syngas and combustion product in different stages are calculated, respectively. The power density and conversion efficiency of the PEMFC are derived. The influences of the molar flow rate of syngas, hydrogen utilization ratio, and working temperature of the fuel cell on the property of the PEMFC are discussed detailedly. In the rational range of the operating temperature, the maximum power densities and corresponding efficiencies are calculated, the optimum values of several key parameters at the maximum power densities are determined, and the optimal selection criteria of molar flow rate of syngas and other parameters are provided.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy conversion and management, 1 Dec. 2020, v. 225, 113391en_US
dcterms.isPartOfEnergy conversion and managementen_US
dcterms.issued2020-12-01-
dc.identifier.scopus2-s2.0-85090855332-
dc.identifier.eissn1879-2227en_US
dc.identifier.artn113391en_US
dc.description.validate202312 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0217-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS38878588-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ni_Configuration_Design_Parametric.pdfPre-Published version1.24 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

110
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

71
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

10
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.