Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103145
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorZhang, Hen_US
dc.creatorWan, Len_US
dc.creatorRamos-Calderer, Sen_US
dc.creatorZhan, Yen_US
dc.creatorMok, WKen_US
dc.creatorCai, Hen_US
dc.creatorGao, Fen_US
dc.creatorLuo, Xen_US
dc.creatorLo, GQen_US
dc.creatorKwek, LCen_US
dc.creatorLatorre, JIen_US
dc.creatorLiu, AQen_US
dc.date.accessioned2023-12-08T03:44:38Z-
dc.date.available2023-12-08T03:44:38Z-
dc.identifier.issn2327-9125en_US
dc.identifier.urihttp://hdl.handle.net/10397/103145-
dc.language.isoenen_US
dc.publisherOptical Society of Americaen_US
dc.rights© 2023 Chinese Laser Pressen_US
dc.rightsThe following publication Zhang, H., Wan, L., Ramos-Calderer, S., Zhan, Y., Mok, W. K., Cai, H., ... & Liu, A. Q. (2023). Efficient option pricing with a unary-based photonic computing chip and generative adversarial learning. Photonics Research, 11(10), 1703-1712 is available at https://doi.org/10.1364/PRJ.493865.en_US
dc.titleEfficient option pricing with a unary-based photonic computing chip and generative adversarial learningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1703en_US
dc.identifier.epage1712en_US
dc.identifier.volume11en_US
dc.identifier.issue10en_US
dc.identifier.doi10.1364/PRJ.493865en_US
dcterms.abstractIn the modern financial industry system, the structure of products has become more and more complex, and the bottleneck constraint of classical computing power has already restricted the development of the financial industry. Here, we present a photonic chip that implements the unary approach to European option pricing, in combination with the quantum amplitude estimation algorithm, to achieve quadratic speedup compared to classical Monte Carlo methods. The circuit consists of three modules: one loading the distribution of asset prices, one computing the expected payoff, and a third performing the quantum amplitude estimation algorithm to introduce speedups. In the distribution module, a generative adversarial network is embedded for efficient learning and loading of asset distributions, which precisely captures market trends. This work is a step forward in the development of specialized photonic processors for applications in finance, with the potential to improve the efficiency and quality of financial services.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhotonics research, 1 Oct. 2023, v. 11, no. 10, p. 1703-1712en_US
dcterms.isPartOfPhotonics researchen_US
dcterms.issued2023-10-01-
dc.identifier.scopus2-s2.0-85173799822-
dc.description.validate202311 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; National Research Foundation Singapore; Ministry of Education - Singaporeen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
prj-11-10-1703.pdf1.96 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

124
Citations as of Oct 6, 2025

Downloads

74
Citations as of Oct 6, 2025

SCOPUSTM   
Citations

15
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.