Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103106
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorCheung, LYen_US
dc.creatorTang, SKen_US
dc.date.accessioned2023-11-28T03:27:08Z-
dc.date.available2023-11-28T03:27:08Z-
dc.identifier.issn0001-4966en_US
dc.identifier.urihttp://hdl.handle.net/10397/103106-
dc.language.isoenen_US
dc.publisherAcoustical Society of Americaen_US
dc.rights© 2016 Acoustical Society of Americaen_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.en_US
dc.rightsThe following article appeared in Cheung, L. Y., & Tang, S. K. (2016). Geometrical parameter combinations that correlate with early interaural cross-correlation coefficients in a performance hall. Journal of the Acoustical Society of America, 139(5), 2741-2753 and may be found at https://doi.org/10.1121/1.4948995.en_US
dc.titleGeometrical parameter combinations that correlate with early interaural cross-correlation coefficients in a performance hallen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2741en_US
dc.identifier.epage2753en_US
dc.identifier.volume139en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1121/1.4948995en_US
dcterms.abstractThe previous binaural data of the authors measured inside two multi-purpose performance halls are re-analyzed using regression in this study. It is done in an attempt to establish a framework that can improve the prediction of early interaural cross-correlation coefficients (IACCs), but with as little measurement effort and parameters as possible. The results show that regression models consist of linear combinations of polynomials of geometrical parameters, when used together with the measurement schemes suggested previously by the authors, are sufficient for predicting the IACCs to within engineering tolerance. The predictions are better than those obtained previously by the neural network approach of the authors. The relative importance of the geometrical parameters in the prediction of IACCs is also investigated.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of the Acoustical Society of America, May 2016, v. 139, no. 5, p. 2741-2753en_US
dcterms.isPartOfJournal of the Acoustical Society of Americaen_US
dcterms.issued2016-05-
dc.identifier.scopus2-s2.0-84969799228-
dc.identifier.eissn1520-8524en_US
dc.description.validate202311 bckw-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberBEEE-0795-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6645087-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
2741_1_online.pdf5.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

75
Citations as of May 11, 2025

Downloads

40
Citations as of May 11, 2025

SCOPUSTM   
Citations

1
Citations as of May 8, 2025

WEB OF SCIENCETM
Citations

1
Citations as of May 8, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.