Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103089
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorXiao, Fen_US
dc.creatorWang, Sen_US
dc.creatorFan, Cen_US
dc.date.accessioned2023-11-28T03:27:02Z-
dc.date.available2023-11-28T03:27:02Z-
dc.identifier.isbn978-1-5090-6517-2 (Electronic)en_US
dc.identifier.isbn978-1-5090-6518-9 (Print on Demand(PoD))en_US
dc.identifier.urihttp://hdl.handle.net/10397/103089-
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rights©2017 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication F. Xiao, S. Wang and C. Fan, "Mining Big Building Operational Data for Building Cooling Load Prediction and Energy Efficiency Improvement," 2017 IEEE International Conference on Smart Computing (SMARTCOMP), Hong Kong, China, 2017, p. 1-3 is available at https://doi.org/10.1109/SMARTCOMP.2017.7947023.en_US
dc.subjectBig building operational dataen_US
dc.subjectBuilding cooling loaden_US
dc.subjectBuilding energy efficiencyen_US
dc.subjectData miningen_US
dc.subjectDeep learningen_US
dc.titleMining big building operational data for building cooling load prediction and energy efficiency improvementen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1109/SMARTCOMP.2017.7947023en_US
dcterms.abstractThis paper aims to explore the potential application of advanced DM techniques for effective utilization of big building operational data. Case studies of mining the operational data of an institutional building for cooling load prediction and operation performance improvement is presented. Deep learning-based prediction techniques, decision tree and association rule mining are adopted to analyze the operational data. The results show that useful knowledge can be extracted for forecasting 24-hour ahead building cooling load profiles, identifying typical building operation patterns and spotting energy conservation opportunities.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitation2017 IEEE International Conference on Smart Computing (SMARTCOMP), Hong Kong, China, 29-31 May 2017, p. 1-3en_US
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85023200191-
dc.relation.conferenceIEEE International Conference on Smart Computing [SMARTCOMP]en_US
dc.description.validate202311 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBEEE-0622-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS9599603-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Xiao_Mining_Big_Building.pdfPre-Published version237.71 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Citations as of May 11, 2025

Downloads

64
Citations as of May 11, 2025

SCOPUSTM   
Citations

12
Citations as of May 8, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.