Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103085
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorChu, Yen_US
dc.creatorMak, CMen_US
dc.date.accessioned2023-11-28T03:27:00Z-
dc.date.available2023-11-28T03:27:00Z-
dc.identifier.issn1053-587Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/103085-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication Chu, Y., & Mak, C. M. (2017). A new parametric adaptive nonstationarity detector and application. IEEE Transactions on Signal Processing, 65(19), 5203-5214 is available at https://doi.org/10.1109/TSP.2017.2725222.en_US
dc.subjectAdaptive nonstationarity detectionen_US
dc.subjectAdaptive model-order selectionen_US
dc.subjectRLSen_US
dc.subjectWald testen_US
dc.subjectWeighted maximum a posteriorien_US
dc.titleA new parametric adaptive nonstationarity detector and applicationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage5203en_US
dc.identifier.epage5214en_US
dc.identifier.volume65en_US
dc.identifier.issue19en_US
dc.identifier.doi10.1109/TSP.2017.2725222en_US
dcterms.abstractTechniques for hypothesis testing can be used to solve a broad class of nonstationarity detection problems, which is a key issue in a variety of applications. To achieve lower complexity and to deal with real-time detection in practical applications, we develop a new adaptive nonstationarity detector by exploiting a parametric model. A weighted maximum a posteriori (MAP) estimator is developed to estimate the parameters associated with the parametric model. We then derive a regularized Wald test from the weighted MAP estimate, which is adaptively implemented by a regularized recursive least squares (RLS) algorithm. Several important issues are discussed, including model order selection, forgetting factor and regularization parameter selection for RLS, and numerically stable implementation using QR decomposition, which are intrinsic parts of the proposed parametric adaptive detector. Simulation results are presented to illustrate the efficiency of the proposed nonstationarity detector, with adaptive estimation and automatic model selection, especially for 'slowly varying' type of nonstationarity such as time-varying spectrums and speeches.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on signal processing, 1 Oct. 2017, v. 65, no. 19, p. 5203-5214en_US
dcterms.isPartOfIEEE transactions on signal processingen_US
dcterms.issued2017-10-01-
dc.identifier.scopus2-s2.0-85023630013-
dc.identifier.eissn1941-0476en_US
dc.description.validate202311 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBEEE-0603-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6760526-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Mak_New_Parametric_Adaptive.pdfPre-Published version3.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

94
Last Week
5
Last month
Citations as of Nov 9, 2025

Downloads

91
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.