Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103016
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorLi, Ren_US
dc.creatorChi, HLen_US
dc.creatorPeng, Zen_US
dc.creatorLi, Xen_US
dc.creatorChan, APCen_US
dc.date.accessioned2023-11-27T05:19:54Z-
dc.date.available2023-11-27T05:19:54Z-
dc.identifier.citationv. 58, 102202-
dc.identifier.issn1474-0346en_US
dc.identifier.otherv. 58, 102202-
dc.identifier.urihttp://hdl.handle.net/10397/103016-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2023 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Li, R., Chi, H.-L., Peng, Z., Li, X., & Chan, A. P. C. (2023). Automatic tower crane layout planning system for high-rise building construction using generative adversarial network. Advanced Engineering Informatics, 58, 102202 is available at https://doi.org/10.1016/j.aei.2023.102202.en_US
dc.subjectAutomatic designen_US
dc.subjectComputer visionen_US
dc.subjectCrane locationen_US
dc.subjectGenerative adversarial networken_US
dc.subjectImage-to-image translationen_US
dc.subjectTower craneen_US
dc.titleAutomatic tower crane layout planning system for high-rise building construction using generative adversarial networken_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Automatic Tower Crane Layout Planning for High-Rise Building 2 Construction Using Generative Adversarial Networken_US
dc.identifier.volume58en_US
dc.identifier.doi10.1016/j.aei.2023.102202en_US
dcterms.abstractWith the spring up of high-rise building projects, tower crane layout planning (TCLP) is increasingly crucial to avoid construction costs, safety issues, and productivity deficiencies. Current optimization approaches require manual data extraction and become more complex as projects scale growing. To further alleviate the planning burden, an automatic TCLP system is proposed, using a generative adversarial network (GAN) called CraneGAN. It generates tower crane layouts from drawing inputs, eliminating the need for manual information extraction. CraneGAN is trained on a high-quality dataset and evaluated based on its computational time and crane transportation time. By adjusting hyperparameters and applying data augmentation, CraneGAN achieves robust and efficient results compared to genetic algorithms (GA) and the exact analytics method. After validating through a numerical analysis for construction project, this proposed approach overcomes complexity limitations and streamlines the manual data extraction process to better facilitate layout planning decision-making.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced engineering informatics, Oct. 2023, v. 58, 102202en_US
dcterms.isPartOfAdvanced engineering informaticsen_US
dcterms.issued2023-10-
dc.identifier.eissn1873-5320en_US
dc.identifier.artn102202en_US
dc.description.validate202311 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2520-
dc.identifier.SubFormID47812-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Automatic_Tower_Crane.pdfPre-Published version2.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

183
Last Week
3
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

2
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

17
Citations as of Dec 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.