Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103004
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineeringen_US
dc.creatorXu, Gen_US
dc.creatorGuo, Jen_US
dc.creatorZhong, Len_US
dc.creatorZhang, Fen_US
dc.creatorLiu, Wen_US
dc.date.accessioned2023-11-20T03:47:06Z-
dc.date.available2023-11-20T03:47:06Z-
dc.identifier.citationv. 185, 109683-
dc.identifier.issn0360-8352en_US
dc.identifier.urihttp://hdl.handle.net/10397/103004-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectCapacity allocationen_US
dc.subjectDelivery time windowen_US
dc.subjectExpress deliveryen_US
dc.subjectHigh-speed railwayen_US
dc.subjectStochastic demanden_US
dc.titleOptimal capacity allocation for high-speed railway express deliveryen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume185en_US
dc.identifier.doi10.1016/j.cie.2023.109683en_US
dcterms.abstractThis study investigates the potential of implementing express delivery services within specified time windows on the high-speed railway (HSR) and optimizes the train capacity allocation scheme for HSR express delivery (HSReD). We first propose an integer linear programming (ILP) model for the deterministic demand case to maximize the profit of the HSReD operation (revenue minus transportation cost, loading/unloading costs, and the penalty incurred due to schedule delays). Then, a two-stage stochastic programming model is developed to account for the stochastic demand case, with the objective of maximizing the expected profit. To facilitate the solution process, the two-stage stochastic programming model is transformed into an equivalent nonlinear model, which is further reformulated into an equivalent integer linear programming (EILP) model that can be solved by commercial solvers. Finally, the proposed method is applied on a small toy network, Nanjing-Hangzhou HSR network and Beijing-Shanghai HSR network to illustrate its efficacy.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationComputers and industrial engineering, Nov. 2023, v. 185, 109683en_US
dcterms.isPartOfComputers and industrial engineeringen_US
dcterms.issued2023-11-
dc.identifier.eissn1879-0550en_US
dc.identifier.artn109683en_US
dc.description.validate202311 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2514-
dc.identifier.SubFormID47804-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Hunan Province; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-11-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-11-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

138
Last Week
3
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

1
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

9
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.