Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102973
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorLiu, Den_US
dc.creatorZhao, FYen_US
dc.creatorYang, Hen_US
dc.creatorChen, Jen_US
dc.creatorYe, Cen_US
dc.date.accessioned2023-11-17T02:59:10Z-
dc.date.available2023-11-17T02:59:10Z-
dc.identifier.issn0017-9310en_US
dc.identifier.urihttp://hdl.handle.net/10397/102973-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2016 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Liu, D., Zhao, F. Y., Yang, H., Chen, J., & Ye, C. (2016). Probability adjoint identification of airborne pollutant sources depending on one sensor in a ventilated enclosure with conjugate heat and species transports. International Journal of Heat and Mass Transfer, 102, 919-933 is available at https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.023.en_US
dc.subjectAirborne pollutant dispersionen_US
dc.subjectConjugate heat and species transferen_US
dc.subjectInverse enclosure flowen_US
dc.subjectProbability density functionsen_US
dc.titleProbability adjoint identification of airborne pollutant sources depending on one sensor in a ventilated enclosure with conjugate heat and species transportsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Probability adjoint identification of airborne pollutant sources depending on few sensors in a vented room with conjugate heat and species transportsen_US
dc.identifier.spage919en_US
dc.identifier.epage933en_US
dc.identifier.volume102en_US
dc.identifier.doi10.1016/j.ijheatmasstransfer.2016.06.023en_US
dcterms.abstractThe definition and governing equation of probability density function (PDF) have been implemented in the present work. The procedure is applied to the backward time identification of the pollutant probability density function history and finally the maximal probability density of airborne pollutant source location in a two-dimensional slot ventilated building enclosure contained with two solid blocks. Steady-state airflow field, sensor location, boundary conditions, thermo-physical properties and geometric characteristics should be known in prior. Spatial probability density function history has been computed under four ventilation modes, i.e., mixed ventilation (MV), displacement ventilation (DV), mixed ventilation with top ceiling outlet (MVS), and displacement ventilation with left side outlet (DVS). Effects of pollutant source location and alarming sensor on the accuracy of the probability density function have been disclosed. The pollutant sources will be more easily identified for the concentrated pollutant strips, where pollutant diffusion is efficient compared with the pollutant source at outlet. Particularly, the good agreement of the probability density function identified source location with the true situation fully shows that adjoint probability density function method is more competitive in the engineering applications involving with complicated convective fluid flows.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of heat and mass transfer, Nov. 2016, v. 102, p. 919-933en_US
dcterms.isPartOfInternational journal of heat and mass transferen_US
dcterms.issued2016-11-
dc.identifier.scopus2-s2.0-84978394570-
dc.identifier.eissn1879-2189en_US
dc.description.validate202311 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBEEE-0741-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Hong Kong Scholar Program; China Postdoctoral Science Foundation; Qingdao Postdoctoral Science Foundation; Fundamental Research Funding Programme for National Key Universities in China; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6659554-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Probability_Adjoint_Identification.pdfPre-Published version1.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

99
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

61
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.