Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102971
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorChu, YJen_US
dc.creatorMak, CMen_US
dc.date.accessioned2023-11-17T02:59:10Z-
dc.date.available2023-11-17T02:59:10Z-
dc.identifier.issn0165-1684en_US
dc.identifier.urihttp://hdl.handle.net/10397/102971-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2016 Elsevier B.V. All rights reserved.en_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Chu, Y. J., & Mak, C. M. (2016). A new QR decomposition-based RLS algorithm using the split bregman method for L1-regularized problems. Signal Processing, 128, 303-308 is available at https://doi.org/10.1016/j.sigpro.2016.04.013.en_US
dc.subjectL1 regularizationen_US
dc.subjectRecursive least squares (RLS)en_US
dc.subjectSparse principal component analysis (SPCA)en_US
dc.subjectSplit Bregman (SB)en_US
dc.titleA new QR decomposition-based RLS algorithm using the split Bregman method for L1-regularized problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage303en_US
dc.identifier.epage308en_US
dc.identifier.volume128en_US
dc.identifier.doi10.1016/j.sigpro.2016.04.013en_US
dcterms.abstractThe split Bregman (SB) method can solve a broad class of L1-regularized optimization problems and has been widely used for sparse signal processing in a variety of applications. To achieve lower complexity and to cope with time-varying environments, we develop a new adaptive version of the SB method for finding online sparse solutions. This algorithm is derived from the recursive least squares (RLS) optimization problem, where the SB method is used to separate the regularization term from the constrained optimization. This algorithm is numerically more stable and easily amenable to multivariate implementation due to the use of a QR decomposition (QRD) structure. An efficient method is further developed for selecting the thresholding rule, which controls the sparsity level of the estimator. Moreover, the SB-QRRLS algorithm is extended to a multivariate version to solve the sparse principal component analysis (SPCA) problem. Simulation results are presented to illustrate the effectiveness of the proposed algorithms in sparse system estimation and SPCA. We show that the convergence and tracking performance of the proposed algorithms compares favorably with conventional algorithms.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSignal processing, Nov. 2016, v. 128, p. 303-308en_US
dcterms.isPartOfSignal processingen_US
dcterms.issued2016-11-
dc.identifier.scopus2-s2.0-84966415404-
dc.identifier.eissn1872-7557en_US
dc.description.validate202310 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBEEE-0739-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6642138-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Mak_New_QR_Decomposition-Based.pdfPre-Published version14.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

95
Last Week
6
Last month
Citations as of Nov 9, 2025

Downloads

121
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

17
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

14
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.