Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102929
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorCheung, Hen_US
dc.creatorWang, Sen_US
dc.date.accessioned2023-11-17T02:58:51Z-
dc.date.available2023-11-17T02:58:51Z-
dc.identifier.issn0140-7007en_US
dc.identifier.urihttp://hdl.handle.net/10397/102929-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2017 Elsevier Ltd and IIR. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Cheung, H., & Wang, S. (2018). A comparison of the effect of empirical and physical modeling approaches to extrapolation capability of compressor models by uncertainty analysis: A case study with common semi-empirical compressor mass flow rate models. International Journal of Refrigeration, 86, 331-343 is available at https://doi.org/10.1016/j.ijrefrig.2017.11.020.en_US
dc.subjectCompressoren_US
dc.subjectEmpirical modelsen_US
dc.subjectExtrapolationen_US
dc.subjectModelingen_US
dc.subjectUncertaintyen_US
dc.titleA comparison of the effect of empirical and physical modeling approaches to extrapolation capability of compressor models by uncertainty analysis : a case study with common semi-empirical compressor mass flow rate modelsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: A comparison of the effect of empirical and physical modeling approaches to extrapolation capability of compressor models by uncertainty calculation: a case study with common semi-empirical compressor mass flow rate modelsen_US
dc.identifier.spage331en_US
dc.identifier.epage343en_US
dc.identifier.volume86en_US
dc.identifier.doi10.1016/j.ijrefrig.2017.11.020en_US
dcterms.abstractSome semi-empirical compressor models are claimed to be more accurate at extrapolation conditions than their empirical counterparts which have a long history of industrial applications due to their uses of physical principles, but it is unknown how much improvement the principles can bring to the modeling of extrapolation scenarios quantitatively. This paper studies the effect of the number of empirical coefficients and physical principles on model accuracy and uncertainty by comparing the estimation of five regression models of compressor mass flow rates. The choice of model training data follows the industrial norm, and model accuracy and uncertainty are calculated. The quantitative results show that the use of neither empirical coefficients nor physical principles guarantees good accuracy and reliability. If a coefficient is redundant to explain the behavior of the phenomenon, regardless of its empirical or physical origin, it should be removed to reduce model inaccuracy in extrapolation scenarios.en_US
dcterms.accessRightsopen accessen_US
dcterms.alternativeComparaison de l'effet des approches de modélisation empirique et physique et de la capacité d'extrapolation des modèles de compresseur par le calcul de l'incertitude : étude de cas avec des modèles semi-empiriques du débit massique d'un compresseuren_US
dcterms.bibliographicCitationInternational journal of refrigeration, Feb. 2018, v. 86, p. 331-343en_US
dcterms.isPartOfInternational journal of refrigerationen_US
dcterms.issued2018-02-
dc.identifier.scopus2-s2.0-85039697107-
dc.identifier.eissn1879-2081en_US
dc.description.validate202311 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBEEE-0523-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6808728-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Cheung_Comparison_Effect_Empirical.pdfPre-Published version3.39 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

102
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

90
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

14
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

13
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.