Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102769
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.contributorMainland Development Officeen_US
dc.creatorZhou, Yen_US
dc.creatorLi, Ren_US
dc.creatorZhou, Yen_US
dc.creatorMok, PYen_US
dc.date.accessioned2023-11-15T02:54:38Z-
dc.date.available2023-11-15T02:54:38Z-
dc.identifier.isbn978-989-8533-79-1en_US
dc.identifier.urihttp://hdl.handle.net/10397/102769-
dc.language.isoenen_US
dc.rightsPosted with permission of the publisher.en_US
dc.rightsThis is a reprint from a paper published in the Proceedings of the IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing 2018 (part of MCCSIS 2018), https://www.iadisportal.org/digital-library/describing-clothing-in-human-images-a-parsing-pose-integrated-approach.en_US
dc.rightsIADIS is available at http://www.iadis.org.en_US
dc.subjectClothing retrievalen_US
dc.subjectClothing recognitionen_US
dc.subjectFine-grained classificationen_US
dc.subjectPose estimationen_US
dc.subjectHuman parsingen_US
dc.subjectDeep learningen_US
dc.titleDescribing clothing in human images : a parsing-pose integrated approachen_US
dc.typeConference Paperen_US
dc.description.otherinformationMulti Conference on Computer Science and Information Systems (MCCSIS 2018), Madrid, Spain, 17-20 July 2018en_US
dc.identifier.spage205en_US
dc.identifier.epage213en_US
dcterms.abstractWith the advent of information technology, digital product information grows exponentially. People are exposed to far too much information, and information overload can slow down, instead of speeding up, a simple decision-making process like searching for suitable clothing online. Traditional semantic-based product retrieval may not be effective due to human subjectivity and cognitive differences. In this paper, we propose a method by integrating the state-of-the-arts deep neural models in pose estimation, human parsing and category classification to recognise from human images all clothing items and their fine-grained product category information. The proposed fine-grained clothing classification model can facilitate a wide range of applications such as the automatic annotation of clothing images. The effectiveness of the proposed method is validated through experiment on a real-world dataset.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn K Blashki & Y Xiao (Eds.), Proceedings of the IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing 2018 (part of MCCSIS 2018), p. 205-213. Madrid : IADIS Press, 2018en_US
dcterms.issued2018-
dc.relation.ispartofbookProceedings of the IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing 2018 (part of MCCSIS 2018)en_US
dc.description.validate202311 bcwhen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberITC-0597-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe supports from Guangdong Provincial Department of Science and Technology Shenzhen Science and Technology Innovation Commissionen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS13246166-
dc.description.oaCategoryPublisher permissionen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Zhou_Describing_Clothing_Human.pdf1.38 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

186
Citations as of Nov 10, 2025

Downloads

101
Citations as of Nov 10, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.