Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102661
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorWang, Sen_US
dc.creatorYing, Yen_US
dc.creatorChen, Sen_US
dc.creatorWang, Hen_US
dc.creatorCheung, KKKen_US
dc.creatorPeng, Cen_US
dc.creatorHuang, Hen_US
dc.creatorMa, Len_US
dc.creatorZapien, JAen_US
dc.date.accessioned2023-11-02T06:41:30Z-
dc.date.available2023-11-02T06:41:30Z-
dc.identifier.citationv. 63, 102971-
dc.identifier.issn2405-8297en_US
dc.identifier.otherv. 63, 102971-
dc.identifier.urihttp://hdl.handle.net/10397/102661-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2023 Published by Elsevier B.V.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Wang, S., Ying, Y., Chen, S., Wang, H., Cheung, K. K. K., Peng, C., Huang, H., Ma, L., & Zapien, J. A. (2023). Highly reversible zinc metal anode enabled by zinc fluoroborate salt-based hydrous organic electrolyte. Energy Storage Materials, 63, 102971 is available at https://doi.org/10.1016/j.ensm.2023.102971.en_US
dc.subjectHydrous organic electrolyteen_US
dc.subjectLong lifespanen_US
dc.subjectVinylene carbonateen_US
dc.subjectZinc fluoroborateen_US
dc.subjectZn batteriesen_US
dc.titleHighly reversible zinc metal anode enabled by zinc fluoroborate salt-based hydrous organic electrolyteen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume63en_US
dc.identifier.doi10.1016/j.ensm.2023.102971en_US
dcterms.abstractAlthough Zn(BF4)2 contains favorable ingredients of fluorine for the formation of ZnF2 rich-Zn2+ ion conducting solid electrolyte interface (SEI), the aqueous electrolyte based on inorganic Zn salt of Zn(BF4)2⋅xH2O shows high Hammett acidity with pH value <1, which gives rise to severe corrosion of metallic Zn electrode and thermodynamically spontaneous hydrogen evolution reaction (HER). Meanwhile, an uneven and arbitrarily aggregated SEI will result in uneven distribution of Zn2+ ion flux and electric field, leading to rampant dendrite growth. Here, we employ a hydrophilic organic solvent of vinylene carbonate (VC) and hydrate Zn(BF4)2⋅4H2O salt for a hydrous organic electrolyte, denoted as ZnBF-VC. With the ZnBF-VC electrolyte used, the VC molecules preferably adsorb on the Zn surface to block H2O molecules and Zn metals. Meanwhile, the unique Zn2+-solvation sheath of Zn(VC)2.89(H2O)1.28(BF4)1.83 is formed, which forms an organic/inorganic hybrid SEI in-situ with ZnF2 and ZnCO3 as inorganic species. The distinct SEI enables favorable Zn2+ ion transport and can effectively protect metallic Zn electrode from corrosion, side reactions and dendrite formation. Consequently, the ZnǀǀZn cells cycled over 2200 h at 0.5 mA cm−2 and the ZnǀǀCu asymmetric cells maintained an excellent Coulombic efficiency (CE) of ∼99.7% over 550 cycles at 1 mA cm−2. Whereas, the ZnǀǀZn cells broke after only 74 cycles in aqueous electrolyte. Additionally, the full cell we assembled with manganese hexacyanoferrate (MnHCF) in ZnBF-VC electrolyte demonstrates excellent cycling stability, achieving a high specific capacity of 146.2 mAh g − 1, and a high retention rate of 85.3% over 1300 cycles at 0.4 A g − 1, while the cell using the referred ZnBF-H2O electrolyte survived only ∼6 cycles. This work proposes a feasible direction for the study of Zn(BF4)2-based organic electrolyte for Zn batteries.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy storage materials, Nov. 2023, v. 63, 102971en_US
dcterms.isPartOfEnergy storage materialsen_US
dcterms.issued2023-11-
dc.identifier.eissn2405-8289en_US
dc.identifier.artn102971en_US
dc.description.validate202311 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2502-
dc.identifier.SubFormID47791-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Highly_Reversible_Zinc.pdfPre-Published version3.88 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

157
Last Week
7
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

6
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

40
Citations as of Dec 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.