Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102655
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.creatorYin, Ten_US
dc.creatorMontesano, PMen_US
dc.creatorCook, BDen_US
dc.creatorChavanon, Een_US
dc.creatorNeigh, CSRen_US
dc.creatorShean, Den_US
dc.creatorPeng, Den_US
dc.creatorLauret, Nen_US
dc.creatorMkaouar, Aen_US
dc.creatorRegaieg, Oen_US
dc.creatorZhen, Zen_US
dc.creatorQin, Ren_US
dc.creatorGastellu-Etchegorry, JPen_US
dc.creatorMorton, DCen_US
dc.date.accessioned2023-10-31T02:01:30Z-
dc.date.available2023-10-31T02:01:30Z-
dc.identifier.issn0034-4257en_US
dc.identifier.urihttp://hdl.handle.net/10397/102655-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Yin, T., Montesano, P. M., Cook, B. D., Chavanon, E., Neigh, C. S., Shean, D., ... & Morton, D. C. (2023). Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry:(II) optimizing acquisition configurations. Remote Sensing of Environment, 298, 113824 is available at https://doi.org/10.1016/j.rse.2023.113824.en_US
dc.subjectCamera modelen_US
dc.subjectCanopy structureen_US
dc.subjectClosed foresten_US
dc.subjectConvergence angleen_US
dc.subjectJitteren_US
dc.subjectLiDARen_US
dc.subjectNASA STVen_US
dc.subjectNew missionen_US
dc.subjectOpen foresten_US
dc.subjectPhotogrammetryen_US
dc.subjectRadiative transfer modelen_US
dc.subjectResolutionen_US
dc.subjectSolar zenith angleen_US
dc.subjectStereogrammetryen_US
dc.subjectSurface elevationen_US
dc.subjectWorldviewen_US
dc.titleModeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry : (II) optimizing acquisition configurationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume298en_US
dc.identifier.doi10.1016/j.rse.2023.113824en_US
dcterms.abstractThe optimal configurations for very high-resolution (VHR, <2 m) spaceborne imagery collection to support stereogrammetry over complex forested terrain remain uncertain. We conducted a comprehensive sensitivity study of digital surface models (DSMs) derived from thousands of simulated along-track VHR stereopairs over two lidar-reconstructed forested scenes of closed and open canopies using the discrete anisotropic radiative transfer (DART) model. We evaluated the influence of convergence angle (CA), solar illumination, and image resolution on the derived DSM accuracy relative to the reference DSM and digital terrain model (DTM) products from airborne lidar data. Our results confirmed that the CA is the most critical acquisition parameter for DSM accuracy. Compared to the frequently used CA of ∼ 35∘ for along-track stereopair acquisitions by WorldView satellites, a smaller CA can provide better accuracy for forest canopy shape estimation by reducing occlusions and mitigating radiometric variance caused by the bidirectional reflectance characteristics of vegetation. For forested scenes over relatively flat terrain, oblique solar zenith angles (50 − 70∘) yielded more consistent DSMs with better accuracy, whereas images with a hotspot configuration generated elevations that were closer to the DTM. Image pairs with smaller ground sample distance (GSD) improved the DSM accuracy, and combinations of small (nadir) and large (off-nadir) GSDs had accuracy between those derived from homogeneous GSDs. These simulation results suggest that available global archives of DSMs from VHR stereo imagery collected under a range of acquisition configurations will yield inconsistent estimates of canopy surfaces. This study also provides a benchmark dataset and configuration guide for 1) selecting existing data to retrieve the forest canopy surface shape, and 2) defining requirements for future satellite missions to characterize the forest canopy surface using stereogrammetry.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationRemote sensing of environment, 1 Dec. 2023, v. 298, 113824en_US
dcterms.isPartOfRemote sensing of environmenten_US
dcterms.issued2023-12-01-
dc.identifier.scopus2-s2.0-85171838670-
dc.identifier.eissn1879-0704en_US
dc.identifier.artn113824en_US
dc.description.validate202310 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNASA’s Commercial SmallSat Data Acquisition Program (CSDA) augmentation to the Terrestrial Ecology Program; NASA’s Earth Science Technology Officeen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0034425723003759-main.pdf16.38 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

142
Last Week
9
Last month
Citations as of Nov 9, 2025

Downloads

158
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.